실시간 정보기반 동적 화물차량 운용문제의 2단계 하이브리드 해법과 Partitioning Strategy

Two-phases Hybrid Approaches and Partitioning Strategy to Solve Dynamic Commercial Fleet Management Problem Using Real-time Information

  • 발행 : 2004.04.30

초록

본 논문에서는 실시간으로 화물차량의 위치와 상태정보가 의사결정자에게 전달되며 핸드폰 등을 이용하여 의사결정자와 운전자의 쌍방향 의사소통이 가능한 시스템 하에서 동적으로 들어오는, 즉 미리 알 수 없는 운송의뢰에 대하여 즉각적으로 최적의 차량운행 계획을 수립하고 이를 새로운 정보에 따라 지속적으로 개선할 수 있는 알고리즘을 개발하였다. 이러한 동적 시스템 하에서 운송의뢰의 성격은 TL(truckload)로 한정하였으며 각 화물은 출발지, 도착지 그리고 배송에 대한 시간제약이 주어진다. 의사결정자는 이러한 화물에 대한 정보를 미리 알지 못하며 인터넷이나 전화 등의 매체를 이용하여 운송의뢰가 들어오는 즉시 운송가능여부를 응답하고 주어진 운송의뢰를 최적의 차량에 배당하며 각 차량에 대한 최적의 운송계획을 수립한다. 이러한 차량의 운송계획은 새로운 정보나 상황에 따라 변화할 수 있다. 이러한 동적 문제에 대하여 본 논문에서는 휴리스틱적 방법론과 최적화 기법의 장점을 취합한 2단계 하이브리드 알고리즘을 제시하고 대규모의 차량군을 다룰 수 있는 기법을 개발하였다. 또한 제안된 다양한 알고리즘에 대하여 시뮬레이션을 통한 실험결과를 제시한다.

The growing demand for customer-responsive, made-to-order manufacturing is stimulating the need for improved dynamic decision-making processes in commercial fleet operations. Moreover, the rapid growth of electronic commerce through the internet is also requiring advanced and precise real-time operation of vehicle fleets. Accompanying these demand side developments/pressures, the growing availability of technologies such as AVL(Automatic Vehicle Location) systems and continuous two-way communication devices is driving developments on the supply side. These technologies enable the dispatcher to identify the current location of trucks and to communicate with drivers in real time affording the carrier fleet dispatcher the opportunity to dynamically respond to changes in demand, driver and vehicle availability, as well as traffic network conditions. This research investigates key aspects of real time dynamic routing and scheduling problems in fleet operation particularly in a truckload pickup-and-delivery problem under various settings, in which information of stochastic demands is revealed on a continuous basis, i.e., as the scheduled routes are executed. The most promising solution strategies for dealing with this real-time problem are analyzed and integrated. Furthermore, this research develops. analyzes, and implements hybrid algorithms for solving them, which combine fast local heuristic approach with an optimization-based approach. In addition, various partitioning algorithms being able to deal with large fleet of vehicles are developed based on 'divided & conquer' technique. Simulation experiments are developed and conducted to evaluate the performance of these algorithms.

키워드

참고문헌

  1. Frantzeskakis, L. & Powell, W. B.(1990), 'A Successive Linear Approximation Procedure for Stochastic, Dynamic Vehicle Allocation Problem', Transportation Science, Vol.24, No. 1, pp.40-57 https://doi.org/10.1287/trsc.24.1.40
  2. Ichoua, S., Gendreau, M. & Potvin, J.-Y. 2000, 'Diversion Issues in Real-Time Vehicle Dispatching', Transportation Science, Vol.34, No.4. pp.426-438 https://doi.org/10.1287/trsc.34.4.426.12325
  3. Kim, Y., Mahmassani, H. S. & Jaillet. P.(2002), 'Dynamic Truckload Truck Routing and Scheduling in Over-Saturated Demand Situation'. Transportation Research Record, Vol.1783, pp.66-71 https://doi.org/10.3141/1783-09
  4. Mahmassani, H. S., Kim. Y. & Jaillet. P.(2000). 'Local Optimization Approaches to Solve Dynamic Commercial Fleet Management Problems' Transportation Research Record, Vol.1733. pp.71-79 https://doi.org/10.3141/1733-10
  5. Powell, W. B.(1987), 'An Operational Planning Model for the Dynamic Vehicle Allocation Problem with Uncertain Demands', Transportation Research Part B. Vol.21B, No.3, pp.217-232
  6. Powell, W. B.(1988), 'Comparative Review of Alternative Algorithms for the Dynamic Vehicle allocation problem', in Vehicle Routing: Methods and Studies, eds. B. L. Golden & A. A. Assad. Elsevier Science Publishers, Amsterdam. pp.249-291
  7. Powell, W. B. & Frantzeskakis, L.(1994), 'Restricted Recourse Strategies for Dynamic Networks with Random Arc Capacities', Transportation Science. Vol.28. No.1. pp.3-23 https://doi.org/10.1287/trsc.28.1.3
  8. Powell,. W. B., Jaillet. P. & Odoni. A. R.(1995) 'Stochastic and Dynamic Networks and Routing'. in Network Routing. eds. M. O. Ball, T. L. Magnanti, C. L. Monma & G. L. Nemhauser, Elsevier. Amsterdam
  9. Powell. W. B.(1996). 'A Stochastic For mulation of the Dynamic Assignment Problem, with an Application to Truckload Motor Carriers', Transportation Science, Vol.30, No.3, pp.195-218 https://doi.org/10.1287/trsc.30.3.195
  10. Powell, W. B., Snow, W. & Cheung R. K.(2000), 'Adaptive Labeling Algorithm for the Dynamic Assignment Problem', (2000a) Transportation Science, Vol. 34, No.1, pp.50-66 https://doi.org/10.1287/trsc.34.1.50.12280
  11. Powell, W. B., Towns, M. T. & Marar A.(2000b), 'On the Value of Optimal Myopic Solution for Dynamic Routing and Scheduling Problems in the Presence of User Noncompliance', Transportation Science, Vol. 34, No.1. pp.67-85 https://doi.org/10.1287/trsc.34.1.67.12283
  12. Regan, A. C., Mahmassani, H. S. & Jaillet, P.(1995), 'Improving the Efficiency of Commercial Vehicle Operations Using Real-time Information : Potential Uses and Assignment Strategies', Transportation Research Record, Vol.1493, pp.188-198
  13. Regan, A. C., Mahmassani, H. S. & Jaillet, P.(1996a), 'Dynamic Decision Making for Commercial Fleet Operations Using Realtime Information', Transportation Research Record. Vol.1537, pp.91-97 https://doi.org/10.3141/1537-13
  14. Regan, A. C., Mahmassani, H. S. & Jaillet, P.(1996b), 'Dynamic Dispatching Strategies Under Real-time Information for Carrier Fleet Management', in Transportation and Traffic Theory, eds. J. B. Lesort, pp.737-756
  15. Regan, A. C., Mahmassani, H. S. & Jaillet, P.(1998), 'Evaluation of Dynamic Fleet Management Systems A Simulation Framework', Transportation Research Record, Vol.1645, pp.176-184 https://doi.org/10.3141/1645-22
  16. Yang, J., Jaillet, P. & Mahmassani. H. S.(1999), 'On-Line Algorithms for Truck Fleet Assignment and Scheduling under Real-Time Information', Transportation Research Record. Vol.1967. pp.107-113
  17. Yang, J., Jaillet. P. & Mahmassani, H. S.(2004), 'Study of a Real Time Multi-vehicle Truckload Pickup-and-Delivery Problem', Working paper