Numerical Analysis of Flow-Induced Noise by Vortex-Edge Interaction

Vortex-Edge의 상호작용에 기인한 유동소음의 전산해석

  • 강호근 (경상대학교 기계항공공학부ㆍ해양산업연구소) ;
  • 김은라 (전북대학교 토목공학과)
  • Published : 2004.10.01

Abstract

An edge tone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, we present a 2-D edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle, using the finite difference lattice Boltzmann method (FDLBM). We use a modified version of the lattice BGK compressible fluid model, adding an additional term and allowing for longer time increments, compared to a conventional FDLBM, and also use a boundary fitted coordinates system. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of ${\alpha}$ = 23. At a stand-off distance, the edge is inserted along the centerline of the jet, and a sinuous instability wave, with real frequency, is assumed to be created in the vicinity of the nozzle and propagates towards the downstream. We have succeeded in capturing very small pressure fluctuations, resulting from periodical oscillations of a jet around the edge. The pressure fluctuations propagate with the speed of sound. Its interaction with the wedge produces an non-rotational feedback field, which, near the nozzle exit, is a periodic transverse flow, producing the singularities at the nozzle lips.

Keywords

References

  1. 강호근, 김은라 (2004). '차분격자볼츠만법에 의한 유동소음의 수치계산', 한국해양공학회지 제18권, 제2호, pp 10-17
  2. Buick, J.M, Buckley, CL., Greated, C.A. and Gilbert, J. (2000).'Lattice Boltzmann BCK Simulation of Nonlinear Sound Waves: the Development of a Shock Front', J. Phys. A: Math. Gen., Vol 33, pp 3917-3928 https://doi.org/10.1088/0305-4470/33/21/305
  3. Cao, N., Chen, S., Jin, S. and Martinez, D. (1997). 'Physical Symmetry and Lattice Symmetry in the Lattice Boltzmann Method', Phys. Rev. E, Vol 55, pp R21-R24 https://doi.org/10.1103/PhysRevE.55.R21
  4. Crighton, D.G. (1992). 'The Jet Edge-tone Feedback Cycle; Linear Theory for the Operating Stages', J. Fluid Mech., Vol 234, pp 361-391 https://doi.org/10.1017/S002211209200082X
  5. Holger, D.K., Wason, T.A. and Beavers, G.S. (1977). 'Fluid Mechanics of the Edgetone', J. Acoust. Soc. Am., Vol 61, No 5, pp 1116-1128
  6. Howe, M.S. (1981). 'The Influence of Mean Shear on Unsteady Aperture Flow, with Application to Acoustical Diffraction and Self-sustained Cavity Oscillations', J. Fluid Mech, Vol 109, pp 125-146 https://doi.org/10.1017/S0022112081000979
  7. Inoue, O. and Hatakeyama, N. (2002). 'Sound Generation by a Two-dimensional Circular Cylinder in a Uniform Flow', J. Fluid Mech., Vol 471, pp 285-314
  8. Ito, S., Fujisawa, T. and Yagawa, G. (2002). 'CFD Analysis of Edge Tones at Low Mach Number Using the Free Mesh Method', Proc. of the 16th CFD Symposium, Tokyo, Japan
  9. Kang, H.K., Ro, K.D., Tsutahara, M. and Lee, Y.H. (2003). 'Numerical Prediction of Acoustic Sounds Occurring by the Flow Around a Circular Cylinder', KSME Intl. J., Vol 17, No 8, pp 1219-1225 https://doi.org/10.1007/BF03016517
  10. Kwon, Y.P. (1996). 'Phase-locking Condition in the Feedback Loop of Low-speed Edgetones', J. Acoust. Soc. Am., Vol 100, No 5, pp 3028-3032 https://doi.org/10.1121/1.417114
  11. Mei, R. and Shyy, W. (1998). 'On the Finite Difference-based Lattice Boltzmann Method in Curvilinear Coordinates', J. Comput. Phys., Vol 143, pp 426-448 https://doi.org/10.1006/jcph.1998.5984
  12. Pointsot, T. and Lele, S.K. (1992). 'Boundary Conditions for Direct Simulation of Compressible Viscous Flows," J. Comp. Phys., Vol 101, pp 104-129 https://doi.org/10.1016/0021-9991(92)90046-2
  13. Powell, A. (1953). 'On Edge Tones and Associated Phenomena', Acoustica, Vol 3, pp 233-243
  14. Rockwell, D. (1998). 'Vortex-Body Interaction', Annu. Rev. Fluid Mech., Vol 30, pp 199-229 https://doi.org/10.1146/annurev.fluid.30.1.199
  15. Sahin, B., Akilli, H., Lin, J.C. and Rockwell, D. (2001). 'Vortex Breakdown-Edge Interaction: Consequence of Edge Oscillations', AIAA J., Vol 39, No 5, pp 865-876 https://doi.org/10.2514/2.1390
  16. Yu, H. and Zhao, K. (2000). 'Lattice Boltzmann Method for Compressible Flows with High Mach Numbers', Phys. Rev. E, Vol 61, No 4, pp 3867-3870 https://doi.org/10.1103/PhysRevE.61.3867