DOI QR코드

DOI QR Code

Evaluation of the Evapotranspiration Models in the SLURP Hydrological Model

SLURP모형의 증발산 모형에 대한 평가

  • Published : 2004.09.01

Abstract

Hydrological models simulate the land phase components of the water cycle and provide a mechanism for evaluating the effects of climatic variation and change on water resources. Evapotranspiration(ET) is a critical process within hydrological models. This study evaluates five different methods for estimating ET in the SLURP(Semi-distributed Land Use Runoff Process)model, in the Yongdam basin. The five ET methods were the FAO Penman-Monteith, Morton CRAE (Complementary Relationship Area Evapotranspiration), the Spittlehouse-Black, the Granger, the Linacre model. We evaluated the five ET models, based on the ability of SLURP model to simulate daily streamflow, and How the five ET methods influence the sensitivity of simulated streamflow to changes in key model parameters and validation SLURP independently for each ET methods. The results showed that the Merton CRAE model had more physical significance and gave better agreement simulated stream flow and recorded flows. It noted that the Morton CRAE model might be more appropriate for the simulation of the actual evapotranspiration in SLURP hydrologic model.

수문 모형들은 물 순환에 있어서의 지표 성분을 모의하고 기후 변동이 수자원에 미치는 영향을 평가하는데 메커니즘을 제공한다. 이러한 모형들에 있어서 증발산량(Evapoanspiration, ET)은 매우 중요한 요소이다. 본 연구에서는 SLURP 모형에서 증발산량 산정을 위하여 제시하고 있는 FAO Penman-Monteith, Morton CRAE(Complementary Relationship Area Evapotranspiration), Spittlehouse-Black, Granger, the Linacre 등, 5 가지의 방법론이 일 하천유출량에 미치는 영향을 분석하고, 각 증발산 방법과 SLURP 모형의 매개변수와의 민감도 분석을 실시하였다. 분석 결과, 본 논문에서는 SLURP 모형을 이용하여 용담댐 유역의 일 유출량을 모의할 경우 여러 증발산 모형 중 Morton CRAE 모형 이 가장 적합함을 확인하였다.

Keywords

References

  1. 김병식, 서병하, 김형수, 김남원 (2003) SLURP 모형을 이용한 하천유출량 모의, 大韓士木學會論文集, 대한토목학회 제 23권 제 4B호. pp. 289-303
  2. 한국수자원공사(1999). 확률강수량 산정 및 이용방법의 연구
  3. Barr, A G., Kite, G.W., Granger, R. and Smith, C.(1997). 'Evaluation three evapotranspiration methods in SLURP macroscale hydrological model.' Hydrological processes, Vol. 11, pp. 1685-1705 https://doi.org/10.1002/(SICI)1099-1085(19971030)11:13<1685::AID-HYP599>3.0.CO;2-T
  4. Dyck, A. j. (1983). 'Overview on the present status of the concepts of water balance models.' New Approaches in Water Balance Computation. IAHS Publ. Vol.148, pp. 3-19
  5. Garbrecht, J. and Campbell, J. (1997). TOPAZ version 1.20: An automated digital landscape analysis tool for topographic evaluation, drainage identification, watershed segmentation and subcatchment parameterization In: TOPAZ User Manual. Rep.# GRL 97-4. Grazinglands Research Laboratory, USDA, Agricultural Research Service, El Reno, OK
  6. Kite, G. W. and Spence (1995). 'Land cover, NDVL LAI and evaportranspiration in hydrologic modelling. In: Applications of Remote Sensing in Hydrology.' Proceedings of the Second International Workshop, PP 18-20
  7. Kite, G.W. (2000) Using a basin-scale hydrological model to estimate crop transpiration and soil evaporation, Journal of Hydrology, Vol. 229, pp. 59-69 https://doi.org/10.1016/S0022-1694(99)00199-7
  8. Krysanova, V., Muller-Wohlfeil, D. I. and Becker, A (1996). 'Integrated modelling of hydrology and water quality in mesoscale watersheds.' Proc. Third Int. Conf. on Intergrating GIS and Environmental Modeling, Santa Fe, New. Mexico, January pp. 21-25
  9. Leavesley, G.H., Lichty, R.W., Troutman, B.M. and Saindon, L.G. (1983). Precipitation-Runoff Modeling System: User's manual, Water Resources Investigation 88-4238
  10. Lemeur, R. and Zhang, Lu. (1990). 'Evaluation of three evapotranspiration models in terms of their applicability for an arid region.' Journal of Hydrology, Vol. 114, pp. 395-411 https://doi.org/10.1016/0022-1694(90)90067-8
  11. Johnson, M.S., Coon, W.F., Mehta, V.K., Steenhuis, T.S., Brooks, E.S., and Boll, J. (2003). 'Application of two hydrologic models with defferent runoff mechanisms to a hillslope dominated watershed in the northeastern US: a comparison of HSPF and SMR.' Journal of Hydrology, Vol. 284, pp. 57-76 https://doi.org/10.1016/j.jhydrol.2003.07.005
  12. Martz, L.W. and Garbrecht, J. (1993). 'Automated extraction of drainage network and watershed data from digital elevation models.' Water Resources Bulletin, ASCE. Vol. 29(6), pp. 901-908 https://doi.org/10.1111/j.1752-1688.1993.tb03250.x
  13. Morton, F.L. (1983). 'Operational estimates of area evapotranspiration and their significace to the science and practice of hydrology.' Journal of Hydrology, Vol. 66, pp. 1-76 https://doi.org/10.1016/0022-1694(83)90177-4
  14. Neitsch, S. L., Arnold, J. R.(2001). Soil and Water Assessment tool; Theoretical Documentation Version 2000, USDA ARS, Temple, Texas
  15. Oliver, H. R. (1985). 'Availability of evaporation data in space and time for use in water computations.' New Approaches in Water Balance Computation. IAHS publ. Vol. 148, pp. 21-31
  16. Palmer, W. C. (1965). 'Meteorologic drought.' Res. Pap. US Weather Bur, Vol. 45, pp.58
  17. Saxton, KE. and McGuinness, J. L. (1982). Evaptranspiration ; Hydrologic Modeling of small watersheds
  18. Singh, V. P. (1989). Hydrologic system, Vol. II, prentice Hall, Eaglewood Cliffs, New Jersey
  19. Sugawara, M. I. (1984). Tank model with snow component, N.R.C. for Disaster prevention
  20. Wosten, J. H. M, Lilly, A, Nemes and Le Bas, C.(1998). Using existing soil data to derive hydraulic parameters for simulation models in environmental studies and in land use planning. Report 156, DLO-Staring Centre, Wageningen

Cited by

  1. Inundation Analysis of Urban Area Considering Climate Change Using SLEUTH Model vol.14, pp.3, 2014, https://doi.org/10.9798/KOSHAM.2014.14.3.277
  2. Estimation of Actual Evapotranspiration and Storage Change for the Bokahcheon Upper-middle Watershed vol.47, pp.7, 2014, https://doi.org/10.3741/JKWRA.2014.47.7.615