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An LTCC Linear Delay Filter Design with Interdigital Stripline
Structure

Hee-Yong Hwang*, Seok-Jin Kim** and Hyeong-Seok Kim T

Abstract - In this paper, new design equations based on the pole-zero analysis for multi-layered
interdigital stripline linear group delay bandpass filter with tap input ports are presented. As a design
example, a four-pole group delay filter with center frequency of 2.14GHz, bandwidth of 160MHz, and
group delay variation of +0.1nS for LTCC technology or multilayered PCB technology is designed. In
the design process, it is not necessary to simulate the entire structure, as the simulation of half
structures is sufficient. Good results can be attained after the optimizing process was performed three
times using the proposed equations and a commercial EM simulator.
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1. Introduction

Linear group delay filters are widely used to cancel

distorted signal of feed forward power amplifiers or
substitute some long heavy delay lines, or as a symbol
delay element of digital-communication systems, and
various theoretical studies to obtain desired delay response
according to ripple levels have been performed [1-4].
However, for the complexity to control both the amplitude
and the phase characteristics simultaneously, the studies for
realizations of the physical linear delay filter are less active
compared to Equal-ripple, Maximally-flat, and Elliptic
filters, in which only amplitude characteristics are
considered. In order to design a practical linear phase filter,
moreover, we have to consider coupling structures for input
and middle parts, and the frequency dependent
characteristic of the coupling structures.
LTCC has many advantages over other technologies to
realize interdigital stripline linear phase filters with small
planar structure, good power capability, high temperature
stability, and other physical stabilities. The tap coupling
structure is simple and beneficial for input and output
coupling on the LTCC process, though it involves some
complexity in dealing with exact electrical properties. To
design physical interdigital stripline linear delay filters,
design equations and an optimizing method are mandatory,
unless there exists a full-wave numerical simulator
specialized to the given structure, which requires a lengthy
time period and great effort to establish.
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Considering the above situations, we derive a design
equation set based on pole-zero analysis of the filter. This
allows the straightforward design and optimization of the
dimensions and parameters of the linear delay filter using
the equations.

2. Design Equations

Fig. 1 shows the equivalent network of the generalized
interdigital linear phase filter with two n+1 degree cross-
coupled interdigital lines. The element values, which are
normalized to the load admittance Y|, are given by (1) in
Fig. 1 P'® The admittance inverters are expressed as Y;;
in the figure.
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Fig. 1 Equivalent circuit for generalized interdigital linear
phase filter.
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Co=—, C,=co,and ¥, =1- .
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where o = g'cosec f(fol) , o is the cutoff
2(f,+ £)

frequency of the low pass prototype, and K; and C; are low

pass prototype element values available in [7].

The input and output parts are modified to inverter input
Y'o1 of (2) by use of the corresponding equivalent circuits
supplied in Fig. 2 (a), (b). Hence, the equivalent circuit of
the given interdigital linear phase filter is represented as in
Fig. 3 in which all elements are a quarter wavelength at the
filter center frequency fj,.
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Fig. 2 The input or output part (a) and its equivalent
circuit (b) for input or output part
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where the phase difference of 90 degrees is ignored.

Fig. 3 Equivalent circuit for linear phase filter with quarter
wavelength transmission lines.

@ ®
Fig. 4 Inverter input (a) and Tapped input (b)

For changing inverter input circuit to tapped input circuit,
we compare the two input circuits shown in Fig. 4.
Appendix Al is used to consider the frequency dependent
characteristics of the transmission line inverter Y'y;, while
deriving susceptance B, and its slope parameter b;.
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In order to obtain the tapped input parameters 0, Y'; and
Cup» we equated the real parts and slope parameters by, b,
of Yin1, Yinz with each other at the center frequency f,.
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Fig. § Filter response by equivalent circuit with tapped
inputs (using ADS™).

A systematic way to iterate a filter using an EM-simulator
is to put all poles and zeros of the filter at the same
positions so that the pole-zeros of the reference filter are
located on the frequency axis.
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Fig. 6 Even or odd mode equivalent circuit for Fig. 3.

The equivalent circuit of Fig. 3 can be used as a
reference filter while all the physical dimensions of the
filter are being determined. Using the symmetry, we can
divide it into two identical sections to calculate all
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parameters, namely even and odd modes as shown in Fig. 6.
The example of the reference filter characteristics is shown
in Fig. 7, and the pole-zeros in S;; from even and odd
modes are shown in Fig. 8.
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Fig. 7 Filter response by equivalent circuit (using ADS™).
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Fig. 8 Typical pole-zeros for s11 of even (left) and odd
(right) mode circuit

The 7 pole-zeros appear around the center frequency for
the 4-pole filter as demonstrated in Fig. 8. The relation of
each pole and zero between the real and imaginary parts of
S11 is summarized as below:

a) Im(S;;)=0 and Re(S,))=-1 atf, , or,

B,=0 atf,

b) Im(S,;)=0 and Re(S;;)=1atf,, fs, or

Y2
B,——2=0 atf,,f,
BZ

¢) Im(S;))=1 and Re(S;))=0at f}, f5 , or

Y2 Y|2
B, ——2=-—9% 4f f
1 B2 . 1»%5
d) Im(S;;)=-1 and Re(S;;)=0at f3, {5, or
2 12
Y = Yo atf,,f,
BZ )
where,
B, =Y, -Y' cotf,,
B,=Y,, —Y, cot@, foreven mode 3
and,

B =-Y,,—-Y', cotf,
B,=-Y,, —Y, cotf, forodd mode. (6)

The input admittance Y;, and Sy; in Fig. 6 are given as
(7) and (8).
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From a)-d), the resonator frequency (or electrical length)
and coupling coefficients are calculated as follows.

b= ©

fl&e+f4o 2 ‘U.E

cot8,,, cotf,,, —coth;,, cotl,,,

=cotf,,, (10)
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where, 6, and 6;, are the electrical lengths of the j-th
resonator at i-th frequency for even mode and odd mode
circuits, respectively.

The definitions of coupling coefficients for the circuit in
Fig. 3 are simply given as (15)~(18).
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k, =—0_ ol (15)
“ oy, \mr.Y,
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A cross sectional of the physical structure and
dimensions of the filter are represented in Fig. 9. The
general stripline parameters and fringe capacitances for
coupled striplines are available in [8, 9].
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Fig. 9 A cross section of physical structure

In the top view of the filter, Fig. 10, L is A/4. The input line
for tapped input is 50ohm line.
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Fig. 10 Top view of the filter.

All resonators must be tuned at the filter's center frequency,
so we take (19).

m
@,Cy =Y, cOt—- (19)

where Cy and Y, are the k-th gap fringing capacitance
and characteristic impedance of the resonator. Each Cy can
be calculated by (29) and the more accurate equations
available in [10].

Cou zwogwk(cho(gk)/s)’ g, =L-1l, (0

Table 1 Spec. of the linear phase filter

N=2n=4, fo=2.140GHz, BW=160MHz, ripple=0.01dB.
b=1.270mm, t=0.00mm, tau=0.00mm, er=25.0.
Group delay= 0.1ns vartation within the passband.

To test the derived design equations, we take
specifications for a linear phase filter as given in Table 1.
The filter needs to have a center frequency of 2.14GHz,
BW of 160MHz, 0.01dB ripple and 0.1ns variation of
group delay within the passband. The relative dielectric
constant is 25 and the height of the filter is 2.54mm. First,

initial physical dimensions from initial design with the
flow chart in Fig. 11 were obtained. This is a well known
process [9] that is greatly inaccurate. The initial
dimensions are fed to an EM simulator, Momentum™ as
even and odd mode structures, whose equivalent circuits
are given in Fig. 6. The resulting poles and zeros are fed to
the proposed equations, (9)-(20), which is implemented in
C++ code. The subsequent process is the optimizing loop
using the C++ code and EM simulator pole-zero to help
situate the pole and zero at the proper positions. For the
characteristic impedance of striplines, Z;, and for the width
of the filter, L, 102 and A/4(7.005mm) are used,
respectively. After optimizing three times, a good linear
delay filter was revealed as shown in Fig. 12. An improved
result was obtained as provided in Fig. 13, which was
followed by additional optimizing by EM simulator to
reduce the delay variation.

3. Conclusion

Design equations for a multi-layered planar interdigital
stripline linear group delay bandpass filter with tap input
port were presented. As a design example, a four-pole
group delay filter with center frequency of 2.14GHz,
bandwidth of 160MHz, and group delay variation of
£0.1nS for LTCC technology was designed. In the design
process, it was not necessary to simulate the entire design
structure, and a fine result was achieved after optimizing
three times with the proposed design equations. This
design method could be useful for controlling the error
correction in the manufacturing process of the filter as well
as in the design stage.
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Fig. 11 Design flow chart for initial design
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Fig. 12 The EM simulated (by Sonnet™ ) response of
optimized LTCC linear delay in Fig. 10
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