DOI QR코드

DOI QR Code

ORTHOGONAL POLYNOMIALS SATISFYING PARTIAL DIFFERENTIAL EQUATIONS BELONGING TO THE BASIC CLASS

  • Lee, J.K. (Department of Mathematics SunMoon University) ;
  • L.L. Littlejohn (Department of Mathematics and Statistics Utah State University) ;
  • Yoo, B.H. (Department of Mathematics Education Andong University)
  • Published : 2004.11.01

Abstract

We classify all partial differential equations with polynomial coefficients in $\chi$ and y of the form A($\chi$) $u_{{\chi}{\chi}}$ + 2B($\chi$, y) $u_{{\chi}y}$ + C(y) $u_{yy}$ + D($\chi$) $u_{{\chi}}$ + E(y) $u_{y}$ = λu, which has weak orthogonal polynomials as solutions and show that partial derivatives of all orders are orthogonal. Also, we construct orthogonal polynomials in d-variables satisfying second order partial differential equations in d-variables.s.

Keywords

References

  1. S. Bochner, Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929), 65–72. https://doi.org/10.1007/BF01180560
  2. W. Hahn, Über die Jacobischen Polynom und zwei verwandte Polynomklassen, Math. Z. 39 (1935), 634–638. https://doi.org/10.1007/BF01201380
  3. V. K. Jain, On orthogonal polynomials of two variables, Indian J. Pure Appl. Math. 11 (1980), no. 4, 492–501.
  4. Y. J. Kim, K. H. Kwon and J. K. Lee, Orthogonal polynomials in two variables and second order partial differential equations, J. Comput. Appl. Math. 82 (1997), 239–260. https://doi.org/10.1016/S0377-0427(97)00082-4
  5. Y. J. Kim, K. H. Kwon and J. K. Lee, Partial differential equations having orthogonal polynomial solutions, J. Comput. Appl. Math. 99 (1998), 239–253. https://doi.org/10.1016/S0377-0427(98)00160-5
  6. H. L. Krall and I. M. Sheffer, Orthogonal polynomials in two variables, Ann. Mat. Pura Appl. 4 (1967), 325–376. https://doi.org/10.1007/BF02412238
  7. H. L. Krall, On derivatives of orthogonal polynomials II, Bull. Amer. Math. Soc. 47 (1941), 261–264.
  8. K. H. Kwon, J. K. Lee and L. L. Littlejohn, Orthogonal polynomial eigenfunctions of second order partial differential equations, Trans. Amer. Math. Soc. 353 (2001), 3629–3647. https://doi.org/10.1090/S0002-9947-01-02784-2
  9. K. H. Kwon, J. K. Lee and B. H. Yoo, Characterizations of classical orthogonal polynomials, Results Math. 24 (1993), 119–128. https://doi.org/10.1007/BF03322321
  10. K. H. Kwon and L. L. Littlejohn, Classification of classical orthogonal polynomials, J. Korean Math. Soc. 34 (1997), no. 4, 973–1008.
  11. J. K. Lee and L. L. Littlejohn, Construction of real weight functions for certain orthogonal polynomials of Bessel type in two variables, preprint.
  12. J. K. Lee, Bivariate version of the Hahn-Sonine theorem, Proc. Amer. Math. Soc. 128 (2000), no. 8, 2381–2391. https://doi.org/10.1090/S0002-9939-00-05648-3
  13. J. K. Lee, Regularization of distributions and orhogonal polynomials in several variables, (preprint).
  14. A. S. Lyskova, Orthogonal polynomials in several variables, Soviet. Math. Dokl. 43 (1991), 264–268.
  15. N. Ja Sonine, Über die angenaherte Berechnung der bestimmten Integrale und uber die dabei vorkommenden ganzen Functionen, Warsaw Univ. Izv 18 (1887), 1–76.
  16. Y. Xu, On multivariate orthogonal polynomials, SIAM J. Math. Anal. 24 (1993), 783–794. https://doi.org/10.1137/0524048

Cited by

  1. Tridiagonal Operators and Zeros of Polynomials in Two Variables vol.2016, 2016, https://doi.org/10.1155/2016/6301413
  2. Bivariate orthogonal polynomials in the Lyskova class vol.233, pp.3, 2009, https://doi.org/10.1016/j.cam.2009.02.027
  3. Sobolev orthogonal polynomials in two variables and second order partial differential equations vol.322, pp.2, 2006, https://doi.org/10.1016/j.jmaa.2005.09.062
  4. On differential properties for bivariate orthogonal polynomials vol.45, pp.1-4, 2007, https://doi.org/10.1007/s11075-007-9113-3