References
- S.-Y. Chung, D. Kim and S. K. Kim, Structure of the extended Fourier hyperfunctions, Jap. J. Math. 19 (1993), no. 2, 217–226.
- I. M. Gel'fand and G. E. Shilov, Generalized functions, Vol. 2, Acad. Press New York and London, 1968.
- S. G. Gindikin and L. R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., 1992.
- L. Hormander, Linear Partial Differential Operators, Springer-Verlag Berlin New York, 1969.
- K. W. Kim, Denseness of test functions in the space of extended Fourier hyperfunctions, Preprint. https://doi.org/10.4134/BKMS.2004.41.4.785
- A. Kaneko, Introduction to hyperfunctions, KTK Sci. Publ. Tokyo, 1992.
- H. Komatsu, Introduction to the theory of generalized functions, Iwanami Sheoten, Tokyo, 1978. (Jananeses).
- K. W. Kim, S.-Y. Chung and D. Kim, Fourier hyperfunctions as the boundary values of smooth solutions of heat equations, Publ. Res. Inst. Math. Sci. 29 (1993), no. 2, 289–300. https://doi.org/10.2977/prims/1195167274
- S. G. Krantz and H. R. Parks, A Primer of real analytic functions, Birkhauser Verlag, 1992.
- E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, 1975.
- M. E. Taylor, Pseudodifferential operators, Princeton Univ. Press, 1981.
- F. Treves, Topological vector spaces, distributions and kernels, Acad. Press New York and London, 1967.
- K. Yosida, Functional analysis, Spriger-Verlag Berlin New York, 1980.
Cited by
- Abstract Volterra Integro-Differential Equations: Approximation and Convergence of Resolvent Operator Families vol.35, pp.12, 2014, https://doi.org/10.1080/01630563.2014.908211
- New spaces of functions and hyperfunctions for Hankel transforms and convolutions vol.153, pp.2, 2008, https://doi.org/10.1007/s00605-007-0498-9