DOI QR코드

DOI QR Code

THE BARTLE INTEGRAL AND THE CONDITIONAL WIENER INTEGRAL ON C[0,t]

  • Ryu, Kun-Sik (Department of Mathematics Han Nam University) ;
  • Im, Man-Kyu (Department of Mathematics Han Nam University)
  • 발행 : 2004.10.01

초록

In this paper, we give a new formula between the conditional Wiener integral E(F|X), the conditional Wiener integral of F given X, and the integral with respect to a measure-valued measure, a kind of Bartle integral. Using this formula, we give some examples of evaluation of E(F|X).

키워드

참고문헌

  1. K. S. Chang and J. S. Chang, Evaluation of some conditional Wiener integrals, Bull. Korean Math. Soc. 21 (1984), 99-106.
  2. J. Diestel and J. J. Uhl, Vector measures, Mathematical Survey, no. 15, Amer. Math. Soc., 1977.
  3. N. Dunford and J. T. Schwartz, Linear operators, part I, General theory, Pure and Applied Mathematics, Vol. VII, Wiley Interscience, New York, 1958.
  4. G. W. Johnson and M. L. Lapidus, The Feynman integral and Feynman's operational calculus, Oxford Math. Monogr., Oxford Univ. Press, 2000.
  5. D. R. Lewis, Integration with respect to vector measure, Pacific J. Math. 33 (1970), no. 1, 157-165. https://doi.org/10.2140/pjm.1970.33.157
  6. C. Park and D. L. Skoug, A simple formula for conditional Wiener integrals with applications, Pacific. J. Math. 135 (1988), no. 2, 381-394. https://doi.org/10.2140/pjm.1988.135.381
  7. K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), no. 12, 4921-4951. https://doi.org/10.1090/S0002-9947-02-03077-5
  8. K. S. Ryu, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), no. 5, 801-819. https://doi.org/10.4134/JKMS.2002.39.5.801
  9. H. G. Tucker, A graduate course in probability, Academic Press, 1967.
  10. J. Yeh, Inversion of conditional expectations, Pacific J. Math. 52 (1974), no. 2, 631-640. https://doi.org/10.2140/pjm.1974.52.631
  11. J. Yeh, Inversion of conditional Wiener integrals, Pacific J. Math. 59 (1975), no. 2, 623-638. https://doi.org/10.2140/pjm.1975.59.623
  12. J. Yeh, Stochastic processes and the Wiener integral, Marcel Deckker, New York, 1973.