ON CLOSURE GAMMA-SEMIGROUPS

Young Bae Jun

ABSTRACT. We introduce the notion of closure Γ -semigroups. We give a condition for a closure Γ -semigroup to be Γ -central, and we show that the Γ -centralizer of a closure Γ -semigroup is a Γ -subsemigroup.

1. Introduction

In 1986, M. K. Sen and N. K. Saha [1] introduced the notion of gamma-semigroups. They studied Γ -group and Γ -regular semigroup, and established a relation between Γ -group and Γ -regular semigroup. The aim of this paper is to introduce the notion of closure Γ -semigroups, and to investigate some properties.

2. Preliminaries

Let $M = \{x, y, z, \dots\}$ and $\Gamma = \{\alpha, \beta, \gamma, \dots\}$ be two non-empty sets. Then M is called a Γ -semigroup if

- (1) $x\alpha y \in M$,
- (2) $(x\alpha y)\beta z = x\alpha(y\beta z)$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

A nonempty subset S of a Γ -semigroup M is called a Γ -subsemigroup of M if $S\Gamma S \subseteq S$.

3. Closure Γ -semigroups

DEFINITION 3.1. A Γ -semigroup M is called a *right closure* Γ -semigroup if there exist a unary operation " $^{\circ}$ " satisfying

- (U1) $x\gamma \tilde{x} = x$,
- (U2) $\tilde{x}\gamma\tilde{y} = \tilde{y}\gamma\tilde{x}$,

Received April 9, 2003.

2000 Mathematics Subject Classification: 20M10, 18B40, 08A05.

Key words and phrases: (Γ -central) closure Γ -semigroup, Γ -centralizer.

(U3)
$$\tilde{x} = \tilde{x}$$
,
(U4) $\widetilde{x\gamma y}\gamma \tilde{y} = \widetilde{x\gamma y}$

for all $x, y \in M$ and $\gamma \in \Gamma$, and in such case we call "~" a right closure on M.

If (U1) and (U4) are replaced by

(U5)
$$\tilde{x}\gamma x = x$$
,

(U6)
$$\widetilde{x\gamma y}\gamma \widetilde{x} = \widetilde{x\gamma y}$$
,

respectively, we say that M is a left closure Γ -semigroup, and " $^{\sim}$ " is a left closure on M.

In what follows a closure Γ -semigroup means a right closure Γ -semigroup unless otherwise specified.

Let M be a closure Γ -semigroup. Denote $\widetilde{M} := \{ \tilde{x} \mid x \in M \}$, and

$$C_{\Gamma}(M) := \{ y \in M \mid \tilde{x}\gamma y = y\gamma \tilde{x} \text{ for all } x \in M \text{ and } \gamma \in \Gamma \},$$

which is called the Γ -centralizer of M. A closure Γ -semigroup M is said to be Γ -central if $C_{\Gamma}(M) = M$.

PROPOSITION 3.2. If M is a Γ -central closure Γ -semigroup, then the condition (U2) is superfluous.

PROPOSITION 3.3. For any elements x and y of the Γ -centralizer of a closure Γ -semigroup M, we have $\widetilde{x\gamma y} = \widetilde{x\gamma y}\gamma \widetilde{x}$ for every $\gamma \in \Gamma$.

PROOF. Let $x, y \in C_{\Gamma}(M)$ and $\gamma \in \Gamma$. Then

$$\widetilde{x\gamma y} = x\gamma y\gamma \tilde{x} = \widetilde{x\gamma y\gamma \tilde{x}}\gamma \tilde{\tilde{x}} = \widetilde{x\gamma y\gamma \tilde{x}}\gamma \tilde{x} = \widetilde{x\gamma y}\gamma \tilde{x}.$$

This completes the proof.

Using Proposition 3.3, we know that if M is a Γ -central closure Γ -semigroup then the operation " $^{\sim}$ " is also a left closure on M.

THEOREM 3.4. Let M be a closure Γ -semigroup. If the operation "~" is a left closure on M, then M is Γ -central.

PROOF. Let $x, y \in M$ and $\gamma \in \Gamma$. Then

$$\tilde{x}\gamma y = \tilde{x}\gamma y\gamma \tilde{x}\gamma y \quad \text{by (U1)}
= \tilde{x}\gamma y\gamma \tilde{x}\gamma y\gamma \tilde{y} \quad \text{by (U4)}
= \tilde{x}\gamma y\gamma \tilde{x}\gamma y\gamma \tilde{x}\gamma \tilde{y} \quad \text{by (U6)}
= \tilde{x}\gamma y\gamma \tilde{x}\gamma \tilde{y} \quad \text{by (U1) and (U3)}
= \tilde{x}\gamma y\gamma \tilde{y}\tilde{x} \quad \text{by (U2)}
= \tilde{x}\gamma y\gamma \tilde{x}. \quad \text{by (U1)}$$

Similarly, $y\gamma\tilde{x}=\tilde{x}\gamma y\gamma\tilde{x}$, and so $\tilde{x}\gamma y=y\gamma\tilde{x}$, that is, $y\in C_{\Gamma}(M)$. Hence M is Γ -central.

Theorem 3.5. The Γ -centralizer of a closure Γ -semigroup M is a Γ -subsemigroup of M.

PROOF. Let $y, z \in C_{\Gamma}(M)$ and $\gamma \in \Gamma$. Then

$$\tilde{x}\gamma(y\gamma z) = (\tilde{x}\gamma y)\gamma z = (y\gamma \tilde{x})\gamma z = y\gamma(\tilde{x}\gamma z) = y\gamma(z\gamma \tilde{x}) = (y\gamma z)\gamma \tilde{x}$$

for all $x \in M$, and so $y\gamma z \in C_{\Gamma}(M)$. Hence $C_{\Gamma}(M)$ is a Γ -subsemigroup of M.

ACKNOWLEDGEMENT. Executive Research Worker of Educational Research Institute in GSNU.

References

[1] M. K. Sen and N. K. Saha, On Γ-semigroup-I, Bull. Calcutta Math. Soc. 78 (1986), 180-186.

Department of Mathematics Education Gyeongsang National University Chinju (Jinju) 660-701, Korea

E-mail: ybjun@nongae.gsnu.ac.kr