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DENSENESS OF TEST FUNCTIONS IN THE SPACE
OF EXTENDED FOURIER HYPERFUNCTIONS

Kwane WHol KiMm

ABSTRACT. We research properties of analytic functions which are
exponentially decreasing or increasing. Also we show that the space
of test functions is dense in the space of extended Fourier hyper-
functions, and that the Fourier transform of the space of extended
Fourier hyperfunctions into itself is an isomorphism and Parseval’s
inequality holds.

§80. Introduction

In this paper, making use of the same method as in [3], we research
properties of the space G’ of extended Fourier hyperfunctions introduced
in [1], which hold true in the space of distributions.

In §2, we give a criterion of test functions for extended Fourier hy-
perfunctions(Theorem 2.1) and research properties of analytic functions
which are exponentially decreasing or increasing(Proposition 2.3 and
2.4). Also we show that every analytic function extended to any strip
in C™ which is estimated with the aid of a special exponential function
exp(p|z|) is a multiplier on the space G of test functions for extended
Fourier hyperfunctions(Proposition 2.5).

In §3, we show that the space G is nondense in F{;, ,, but in a weaker
topology every function in F{j . can be approximated with functions be-
longing to the space G(Theorem 3.2), and that G is dense in G’(Theorem
3.7). And we show that the convolution of an extended Fourier hyper-
function and a test function is an entire function which increases ex-
ponentially(Theorem 3.5) and the convolution of an extended Fourier
hyperfunction and two test functions is associative(Theorem 3.6).
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In §4, we show that the Fourier transform ¥ : G — G(G' — G') is an
isomorphism(Theorem 4.3), and that Parseval’s inequality holds true.
Regarded all function in M (G resp.) as an entire function estimated
with a special exponential function exp(u|z|)(with any exponential func-
tion exp(u|z|) resp.), we show that G is an ideal in M, i.e., each element
in M is a multiplier on G(Proposition 4.9).

§1. Preliminaries

As a norm in R7? (in C?7, resp.) we take |z| = }:;.l:l lz;| (2] =
E?:I |2;], resp.), and the volume element dz = dz; - - - dzy, is fixed. Put
D= (Dl,...,Dn); Dy Z’i_lak, O = 8/8iL‘k, k=1,...,n, i = \/:_1

We denote by R the dual space of R7. Let § = (&1,-..,&n) be
coordinates in RE such that the duality is expressed by the bilinear form
<zE>=T8& 4+ Tpba- If = (ﬁla"'aﬁn) and v = (’71;"' ,’Yn)
are multi-indices of nonnegative integers, then |5| =01 + -+ + Bn, B+
¥=Br+m, Bt Tn)y B =il Bty &8 = 676, DF =
DPr... DB~ and 8% = 9% ... 9P,

Let £, and E; be topological vector spaces embedded in a topological
space F. Denote by E1 () E2 and E; + E5 the subspace of elements of E;
being contained in E> and the space of sums @1 + @2, 01 € E1, 2 € Es,
respectively. The topologies of E} and £ induce topologies in E; (] E2
and E; + E5. In case F; and Fs are Banach spaces, the Banach norm

(1.1) o, Bx () E2) = |, B1| + |, B
and the norm

(1.2) lp, Eq + E| inf (1, E1| + |2, Ea|)

p1t+p2=¢p

are defined on F; )| E2 and E; + E,, respectively.
Let I denote an open unit cube in R™ :

I={w=(w1,...,wn) €ER" | lwj| < 1,j=1,...,n}

and let I(®), k =1,...,2", be the vertices of the cube, i.e., the various
vector whose coordinates assume the values £1.
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§2. The space F(;,) of analytic functions decreasing or in-
creasing exponentially

Let Fip .y be the space of continuously differentiable functions ()
for which the norm

0% ¢(z)| exp(v|z|)

(2.1) lelhw) = xeslgga lalg ,h>0 veR
is finite.
Then the (continuous) embeddings
(2.2) Finyy C Faopry, h2 0 >0, v >0/
take place.

THEOREM 2.1. f(x) € F(4,) if and only if f(x) can be continued
holomorphically to the tube domain Dy = {z + yi € C"| |y;| < h,j =
1,2,--+ ,n} such that

(2.3) f@+yi)| < Cexp(—vlz])

Proof. Let f(x) € Fn,) and o € R". When |z; — zg;| < h,i =
1,2, ...,n, Taylor’s formula can be written

fwy= 3 g

lal<k

+k /1(1 —t)F-1 Z 9 f(@o + Ha — o)) (x — xo)*dt.
0

ol
la|=k

The absolute value of the remainder is less than or equal to
| flhy exp(=vl20]) exp(rhlv])(k + 1)" (feig — 204 |/R)",

where |z, — To;,| = maxi<i<n{|T;—z0i|}- Since limg 00 k*(1+p)~* =0
for p > 0 and o € R, this tends to zero for |z; — zo;| < h. This implies
that for |y;| < h

$+3ﬂ|<2‘ f(w‘|a|
< | flehwy exp(—vlzl) Y 1y

o
< KIf'(h,V) exp(—v|x|),
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whence we obtain (2.3).
Conversely, if f(z) satisfies (2.3), then from Cauchy’s integral for-
mula:

24)  8°f(z) = %E/lzj—lezh—e—(z__t%)md% 1=(1,..,1)

we obtain

al

(2.5)  |8*f(z)| < C(h_—e)m

exp(—v|z|) exp(n|v|(h — €)).
If e — 04, then we see that f € Fi; ). a

From Theorem 2.1 we can see that F{3 ) consists of analytic functions
extended to the tube domain Dj which increase, for || — o0, not
stronger than the exponential function exp(—v|z|).

ProPOSITION 2.2. f, — 0 in F ) if and only if

sup |fn(z)|exp(v|Rez|) — 0.
ZED}L

Proof. Tt follows from the proof of Theorem 2.1. |

We can easily see from Theorem 2.1 and Cauchy’s integral formula
(2.4) that the following holds:

PRrROPOSITION 2.3.
(1) Ifp; € F(hi;Vi)’ 1= 1,2, then p1yp2 € F(h,V1+V2)’ h= min{hl, hz},
(2) Ifpe F(h’,,), then x%p € F(h’l,_e), 0% € F(h/2,u), € >0,
(3) If f € Fip), then f(z)exp(—Y iy 23) € Fp ), 4> v.

For I' € R™ let Fjj, ) be the space of infinitely differentiable functions
o for which the norm

0%p(x)| exp(< z,T >
i = sup 126l )
:IIGR",& h/ a!

is finite.
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PROPOSITION 2.4.
(i) For h,v > 0 we have

2n

(2.6) Finpy =[] Finpreo

k=1

and (2.1) is equivalent to the natural norm of the right-hand
space of (2.6):

271
(2.7) Z [@lihpreo)-
k=1

i) For h,v > 0 the space F(,) consists of those and only those
(h,v)
elements of the intersection ﬂrey 1 Fin,r) for which the norm

(2.1") "lelnwy = sup @l
Tevi
is finite.

(i1) For h > 0,v < 0 we have

271
(2.7) Fipy =Y Fippreon,

k=1

and (2.1) is equivalent to the natural norm of the right-hand
space of (2.7).

Proof. (i) It is obvious that
exp(v|z;|) < exp(va;) + exp(—va;) < 2exp(v|z;).
Multiplying these inequalities for i = 1,...,n we find

271
(2.8) exp(v|z|) < Zexp(< vI® z >) < 2" exp(v|zl),

k=1

which implies that (2.1) and (2.1") are equivalent for h,v > 0.
(') Let I = (w1, ...,wn) and let |w;| < v,j = 1,...,n. Multiplying the
inequalities

(2.9) exp(w;z;) < exp(va;) + exp(—vz;)
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for i =1,...,n, we obtain

271
(2.8") exp(< T,z >) < Zexp(< vIt® g >),
k=1
whence
277,
'l80|(h,u) < Z [@lih,pzem) < 27 l<P|(h,V)-
r=1

Conversely, let ’|<,o|(h,u) < o0. Given z € R", we take I' = (e1p, ..., €p),
p < v,in (2.8"), where ¢; = 1 and the sign of ¢; coincides with that of
x;. Then we derive

exp(p|z|)|0%¢(z)|
h—lelgl

S I’@'(h,,/)

for all x € R™ and p < v. By continuity, this inequality is retained for
p = v as well. Taking the supremum over € R™ and a we obtain (i').
(ii) By virtue of the obvious inequality

exp(v|z|) <exp(< T,z >), Vw <0, T = (w1, ...,wn), |wj| < |y,

the spaces Fy, ,, =), £=1,2,..,2" and, consequently, their linear hull

as well are embedded in Fi;, ,). And if ¢ = Ein:l QRTINS Finure),
then, by triangle inequality,

2TL
%1k, < Z |7/’(n)|[h,u1<~>]~

k=1

Taking the infimum in the right-hand side over all the representation ¢ =
Zi:l 1) we prove that the right-hand side space of (2.7) is embedded
into the left-hand side space.

To prove the opposite embedding we construct a system of functions
B, k=1,..,27, x>0, possessing the following properties:

() TisyxW(z) =1
(b) If ¢ € Finy), then X%y € Fiypreop, and [ (@)l 100y <
constli/zl(h,,,).
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The embedding of the left-hand space of (2.7) into the right-hand side
space is a trivial consequence of (a) and (b).
If 5, ..., 25 > 0 and z5,_,,...,z;, <O, let (e1,...,€,) be the coordi-
nates of a vertex I®), where ¢;, =---=¢;, =land €,,, =+~ =¢€;, =
—1. Then we put
k n

(210)  x®@ =]Jexp(a}) J] (1 —exp(—2%)).
1=1 1=k+1

It is obvious that (a) is fulfilled.

Since < I*®), 2 >= Zle Tiy — Y ojeps1 Tqy = ||, it follows from the
proof of Theorem 2.1 that (b) holds, whence the proposition is proved.O3

By virtue of (2.2), we can define the spaces G and M with the aid of
the operations of projective and inductive limits:

Gg= ﬂF(h,u);
(2.11) v
M=) Fh-c)> Fih—o0) = UF(h,u)~
h>0 v

Using the system of norms (2.1) we introduce the structure of a count-
ably normed space in G, i.e., the system of neighborhoods in G is deter-
mined by

(2.12) lelhy < & hveQF, e>0.

The topology generated by the neighborhoods (2.12) can be interpreted
as the topology of projective limit of the spaces Fi3 ..

The system of norms (2.1) makes it possible to introduce a distance
function in G, i.e., to turn G into a Fréchet space.

The spaces G and M consist, respectively, of analytic functions ex-
tended to C™ which increase, for |Rez| — oo, not stronger than any
exponential function exp(v|Rez|) and of analytic functions extended to
any strip in C™ which are estimated with the aid of a special exponential
function exp(v|Rez|).

PROPOSITION 2.5.

(i) M is a commutative algebra relative to multiplication.
(ii) G is an ideal in M, i.e., the operation of multiplication is defined:

M x G — G ((a(z),d(x)) — alz)p(z))

and this operator is continuous.



792 Kwang Whoi Kim

Proof. It follows from the proof of Theorem 2.1. a

§3. Denseness of the space G

Fip,u) is not dense in Fi3, ) when pu > v. Indeed, if F(n,p) is dense
in F ), then for ¢ € F, ) with |¢|exp(v|z]) > 1 there is a function
Y € Fn,,) such that [p — |,y < L.

On the other hand, we have

1 >[p —Y|(h,y

(3.1) > || exp(v|z]) — [¢| exp(v]z])
2| exp(v|z]) = [l (h,u) exp(— (1 — v)|z]).

Passing to the limit for |z| — oo, it is a contradiction.

PROPOSITION 3.1. If F{3, ,,) is dense in F(3 ,) relative to the topology
of Fipy—ny, 0 >v, n>0

Proof. Let f € F,,) and ¢(z) = exp(— Y i, @2). Then it follows
from Theorem 2.1 that f(x)¢(ex) € Fip ) and

Sup |f(2)¢(ez) — f(2)| exp((v — n)|Rez|) — 0 as € — 04,

whence it follows from Proposition 2.2. a

The space G is nondense in F(3,). In fact, if G = F(n,), then for
@ € Fp,,) with |p|exp(v|z|) > 1, then there is a function ¢ € G such
that |¢ — 9|, ) < 1. We can see from (3.1) that it is a contradiction.

However, in a weaker topology all the element of F,) can be ap-
proximated with functions belonging to G.

THEOREM 3.2. G is dense in Fy . relative to the topology of

F(h/e,u-—T)vT > 0.

Proof. Let

f € Fnwys 95(z) = (G + D)™ n P exp(—12(5 + 1)) _a3),
k=1
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and let
fi(@) = f* p;(2).
Then it follows from Theorem 2.1 that f; € Foo,.)-
First of all, we show that F{. ) is dense in F,,) relative to the

topology of Finsey, i€, |fi = fl(nse) — 0 as j — o0.
From the direct estimates we obtain that

10 f;(z) — 9% f ()]

< (G+1mn —"/2/|V8°‘f(:n —0t) - t|exp(—2(j + 1) > _ 1)t

< q—1/2 n2""

< ST 1) Rt (h/e) ™l ad| fln,u)

(n —1)62 07 l/2g
XeXP(—leI)eXP(‘(—T)E)[ P(“4(j+1)2)+ 11

for some 0 < 6 < 1. This implies that |f; — f|(r/e,sy — 0 88 j — c0.
Next, we show that G is dense in F{,,) relative to the topology of

F(h/e,u—‘r)-
Let f € Flo,). Then we see from Theorem 2.1 that

x) exp(— Z(ka)z) €
k=1

From Proposition 2.2 it suffices to prove that

n
sup z) exp(— Z ezk)?) — f(2)|exp((v — n)|z|) — 0 as € — 0.
ZEDh/e k=1

By Theorem 2.1 we obtain the following estimates: For z € Dy, /¢

n
|f(2)exp(= Y _(e2)?) — f(2)] exp(v]a])
P
< Cé exp(n(eh/le)z){(l +2(eh/e)?) |z + (2h/e)|z| +n(eh/e)?},
whence it follows, and hence the theorem is proved. O
Let the space G’ be a space of continuous linear functionals on G.

We denote by (f,¢) = f(¢) the value of the functional f € G’ on the
element ¢ € G.
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Note that if f € §’, then there are positive numbers h, 4 and a con-
stant K such that

(3:2) (£, 0)] < Klelny, Vo € 6.

This implies that the functional f is continuous in the norm |- |4 ), i.e.,
belongs to the Banach conjugate space (F4,,))" of Fiy ).
The embeddings (2.2) induce the adjoint embeddings

(3.3) (F(h',V/))/ C (F(h,l/))/> h/ 2 h/I > 0, 14 2 1/,,

and we can consider the union Uy, ,(F(r,)’. We have already shown
that G C U, , (Fin,))’- Since the opposite inclusion is obvious, we have
thus proved.

THEOREM 3.3. G’ regarded as a vector space coincides with the union
of (F(h,u))/-'

(3.4) . ¢ = JFnn).

h,v)

The right-hand space of (3.4) can be equipped with the topology of
inductive limit, and in the left-hand space of (3.4) we can introduce the
topology of the strong conjugate space of G.

Note that the space G’ is a reflexive and is a regular inductive limit,
which implies the coincidence of two above-mentioned topologies in
G'(see [3]).

The space G’ are called the space of extended Fourier hyperfunctions.

If f € Fauy 9€ Fn—vte), hye >0, then the bilinear form

(3.5) (f,9) = / f(@)g(z)de

is defined and depends continuously on f and g (in the corresponding
topologies). Hence,

(3.6) GgcC F(h’,,) C (F(h,_,,_,_e))’ cg.
If u € G’ and ¢ € G, we denote by u * ¢ as follows:

(3.7) (u* @)(z) = uy(p(z — y)).
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We see that integration by parts implies
68 [Eu@eeds = (-0 [u@e) @i

for u, ¢ € G. The mapping ¢ — [(8%u)(z)p(z)dz and ¥ — [ u(z)y(z)dz
are continuous linear functionals on G. Denoting them by 0%u and w,
(3.8) can be written in the form

(3.9) (8*w) () = (=D)1*Nu(8%9).

But the right-hand side of (3.9) is well-defined whenever u € G’ and
¢ € G. Furthermore, ¢ — u(0%¢p) is continuous on G (being the compo-
sition of two continuous functions). Therefore, we can define the partial
derivative 0%u is an element of G'.

In a similar way, the translation operator 7, A € R™ and the reflec-
tion operator I on G’are defined as follows:

() () = u(r—n), Tu(p) = u(lp) Ve € G

THEOREM 3.4. If u € G’ and ¢ € G, we have u x ¢ € C®. The
derivatives of the convolution are given by

(3.10) 0% u* ) = (0%) x o = u* (0%).

Proof. If x; — z, it is clear that p(z; —y) — p(z —y) in G as a
function of y. Hence u * ¢ is continuous. To complete the proof we only
have to prove (3.10) when |a| = 1: it then follows inductively for all «
and shows that u * ¢ € C°°. Thus let e; be the unit vector along the
z-axis and consider the difference quotient

R ((u* o) (z + hex) — (ux 9)(2)) = uy((p(z + hex —y) — p(z —y))/h).

When h — 0, the difference quotient ¢(x + hey, — y) — o(z — y))/h
converges to Oxp(z — y) € G as a function of y for fixed z. Hence we
obtain

Ok (u * p) = u* (Okyp).

Since Oz — y) = =0y, p(z — y), it follows from the definition of the
derivative of a Fourier hyperfunction that

(Oku) * @ = u* (Fkp),
and this completes the proof. O
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THEOREM 3.5. If u € G’ and ¢ € G, then the convolution f(x) =
(u * @)(z) belongs to F(, -, for some p > 0.
(00,—p)

Proof. From (3.2) we obtain the following estimates: For some C, h,
u>0

(0" (z — )
< C16%p(@ = s
_ o 0780 — ) exp(ulyl)
~O% R-TAIg]

W71 (o + B)lexp(—plz — y]) exp(uly])
< Ol sup B19131

(3.11)

< Clilow sup (#'/2)" (n' /20) TP ot exp ().
Then if A'/2 > h, (3.11) implies that

0% (u* @) (@) £ Cleplgu,u (1'/2) 71 al exp(ulz]).
If h'/2 < h, then we obtain

(0%0(z — Nl < Clolznu(h'/2)”" ol exp(ulz)),
whence the theorem is proved. a

A direct application of Fubini’s theorem shows that if u, ¢, and ¢ are
all in G, then

/ (u o) ()b () dz = / u(@) (I * ¥)(z)d.

The mappings ¢ — [(u* ¢)(z)¢(z)dz and § — [u(zx)f(z)dx are con-
tinuous linear functionals on G. If we denote these functionals by u * ¢
and u, the equality can be written in the form:

(3.12) (u* @) (W) = u(lp x ).

If u € G’ and ¢, belong to G, the right-hand side of (3.12) is well-
defined since I'p * 1) € G. Furthermore, the mapping v — u(lp * 1),
being the composition of two continuous functions, is continuous. Thus,
we can define the convolution of an extended Fourier hyperfunction u
with a test function ¢, u * ¢, by means of the equality (3.12).

Note that a sequence {¢,} converges to 0 in G if and only if for any
h,pu >0

;) expplel)
h=lelg!
uniformly with respect to z,a when 5 — o0.
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THEOREM 3.6. Ifu € G' and ¢,% € G, then
(3.13) (u*x @) xp =ux*(p*).
Proof. For € > 0 we form the Riemann sum

(3.14) fe(@) = €Y p(z — ge)(ge),

where g run through all points with integer coordinates. Let

fom@=¢ 3 pla - ge)p(ge).
lg;l<m

Then we can see from Theorem 2.1 and 3.4 that f. n(z) — fe(z) in G,
and that f(z) — (@ *¥)(z) in G. Hence

(u* (o % 9))(z)

= lim Hlm (U*fem)( )
€e—04 m—oo

= 61_1)1(r)1+ lim_€" > (uxp)(@ — ge)v(ge),
lgii<m

and the theorem is proved. O

THEOREM 3.7. The canonical embedding G C G’ is continuous and
image of G is dense in G'.

Proof. First of all, we show that if u € G’, there is a sequence u; €
Floo,—p) such that u; — u in the weak topology ingG’.

Let p;(z) = (j +1)"wn ™2 exp(—12(j +1)2 Y p_; z?) and u;(z) =
u*@;(x). Then we obtain from Theorem 3.5 that u; € Fi,—,) for some
p > 0. It follows from Theorem 3.6 that for every ¢ € G

u; (%) = ((ux p;) * I9)(0) = (u * (¢; * [4))(0).

Since @; * Iy — Iy in G, it follows.

Next, we show that if ¢ € F{o,_,), there is a sequence {y;} in G such
that ¢; — ¢ in the weak topology in G’.

Let ¢;(z) = o(z)exp(—j~* Y p_1 z2). Then it follows that ¢; € G
and

() = / pi(@W@lds — o) = [ ple)vi@)ds,

whence it follows, and hence the theorem is proved. [
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§4. The Fourier(-Laplace) operator in G

Denote by (Fp)(€) the Fourier transform of a function p(z) € G:

(F)(E) = p(6) = (2m) ™2 / exp(—i < 2,€ >)p(o)dz.

ProproOSITION 4.1. The Fourier transform ¥ : G — G is continuous
and linear. The inverse Fourier transform ¥~ : G — G is also continuous
and linear.

Proof. Let ¢ € F(,,), Vh,v > 0. Then we have

#0p(e)| < (2m) ™2 [ 10°(a"p(w))lde

g | |
< (27)" /2 B! a! / 2180~ () e
= 1) ;7!(5-7)!(04_7); | ()]
< ClolnnyalBi(v/2)71 (h/2)1F12718))
whence we obtain

h/2IAIER| J0° (e _
e e < Ol

Summing the above inequality with respect to 8 and taking the supre-
mum over all z and «a, we find

(4.1) 12l w/2,n/2) < K 19l(h)-

This proves that the mapping ¢ — ¢ is continuous in the topology of
g. u

THEOREM 4.2. Fourier’s inverse theorem holds:
(@2 FFp(e) = 2m) ™ [expli < 2,6 >)T0(O)dk = ¢lo),

i.e., we have F~1Fp = ¢, and similarly FF~1p = ¢.
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Proof. We have

/ W(E)P(E) expli < 7,€ >)dE = / b + v)dy, (o, b €G).

If we take ¢(ef) for ¥(§), € > 0, then

(2m) "2 / exp(—i < 4, € S)P(eE)dE = e "P(y/e).
Hence

/ B(e€)B(E) expli < x, € >)dE = / D)l + ey)dy.

We shall take, 9(z) = exp(— Y r_, 22/2) and let € — 04. Then

9(0) [ 9(6) expli < 2, ) = o(@) [ D).
This proves (4.2). O

Based on the conjugacy, the Fourier operator on G’ is defined: For
f € G’ we put

(4.3) (Ff,5710) = (£, 9).

As has already been said, we have F71G = G, and therefore the function
Ff is defined throughout G.

According to classical Parserval’s theorem, (4.3) holds for any f,¢ €
G. It follows that the Fourier operator on G commutes with the canonical
embedding G — ¢/, ie., for f € § we can interpret as the Fourier

transform in the sense of G'. If we put ¢(z) = ¥(z), where (&) € G,
this results in

(f,9) = (£,9),

ie.,

g_v:g/__)g/

is the adjoint operator of F : G — G and hence is an isomorphism. We
have thus proved
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THEOREM 4.3. The spaces G and G’ are Fourier self-dual:

(4.4) FG=0,3G =g

REMARK. Since G is a dense subset in G’, the Fourier operator on G’
can be also be defined as the extension by continuity of (4.1).

Let v > 0. Let F(**%) denote the Banach space of functions 1(¢)
holomorphic in the tube domain D, and having a finite norm

(4.5) [91*) = sup exp(s|¢])|(C)I-
¢eD,

PROPOSITION 4.4. The map F,,) — F(MY) © f(z) > f(z+yi)isa
topological isomorphism and there are constants Cy, Cz > 0 such that

C1l 1™ <\ flhwy < ColfIP2.

Proof. Tt follows from the proof of Theorem 2.1. (|

REMARK. From Proposition 4.4 we can see that

(2.11) M= (| FPm),

h>0

PROPOSITION 4.5. If{f,(¢)} is a sequence of functions in F(»*) such
that fn(c) — f(C) in F(hrV), then f € F(h,l/)'

Proof. 1t is obvious that f(() is holomorphic in the tube domain D,.
Since there is a natural number N such that [f,(¢) — f(¢)|P*) < 1
for n > N, we obtain

|F(Olexp(v[C]) <1+ fn(CQ)| exp(v[C]).

Taking the supremum in the above inequality over all ( € D,, it is
proved. a

COROLLARY 4.6. If {f.(x)} is a sequence of functions in F{y . such
that f.(z) — f(z) in Fnuy, then f € F(h’,,).
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Proof. 1t follows from Proposition 2.2 and 4.5. |

If o € Fi, 1y, hyv > 0, then for any ¢ € D,, the absolutely convergent
Fourier-Laplace integral is defined:

@6) i) - Q) = n) ™2 [exp(=i <a.¢ >)pla)da,
and Parseval’s inequality holds:
(4.7) 614" < Klel(hp)-

Indeed, since

@@%=@ﬂ””/}mP4<m+m£>¢@+mM%

Y = '—(h_ f)gﬂ, €>0,
3
we obtain that for {Im(;| < v

IB(Q)] < (2m) /2| () / exp(< @, Im( >)
x exp(—(h — €)|€]) exp(—v|x + yi|)dzx.

If e — 04, then (4.7) follows from Proposition 4.4.
On the other hand, since F{,, 1) is a subspace of the Schwartz space S
of rapidly decreasing functions, for a function ¥(§) € F\, p) there exists

a function ¢ € S such that B(€) = ¥(£). Therefore for 3(¢) € F the
classical inverse Fourier-Laplace transform is defined:

@6y o) = @)/ / expli < 7,& + iw >)P(E + iw)de,
where w; = (v — e)'—ij—', 0 < e < v. Then for |y;| < h we have
lp(z + i)

< @02 [exp(- < 3,0 >)exp(— < 9, H)IP(E +w)lde

< C1¢|®M exp(~(v — €)|z]) / exp(— < 1,€ >) exp(—hIE])de.

If ¢ — 0, then it follows from Proposition 4.4 that Parserval’s inequality
holds:

(4.7) lolchy < K|@|@M.

As a consequence of what has been said, we obtain the following:
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THEOREM 4.7. The Fourier-Laplace transform ¥ : Fyp, ,) — FWh) .
o(x) — @(¢) is a topological isomorphism.

THEOREM 4.8. The Fourier-Laplace transform operator determines
an isomorphism

(4.8) Fg= (] FM.

h,v>0

The right-hand space (4.8) consists of entire functions ({) such
that for any h,v > 0 there exists a constant K}, such that [(()| <
K, eXp(—hKl)a VC eT,.

PROPOSITION 4.9. (i) M is a commutative algebra relative to mul-
tiplication;
(ii) FG is an ideal in M. i.e., the operation of multiplication

M x G — G ((a(C), %(¢)) — a()% (<))

is defined.
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