SOME RESULTS ON \mathfrak{D} -ADMISSIBLE $(\in, \in \lor q)$ -FUZZY SUBGROUPS

DAE SIG KIM

ABSTRACT. The definition of a \mathfrak{D} -admissible fuzzy subset for an operator domain \mathfrak{D} on a group G is modified to obtain new kinds of $(\in, \in \lor q)$ -fuzzy subgroups such as an $(\in, \in \lor q)$ -fuzzy normal subgroup, an $(\in, \in \lor q)$ -fuzzy characteristic subgroup, an $(\in, \in \lor q)$ -fuzzy fully invariant subgroup which are invariant under \mathfrak{D} . As results, some of the fundamental properties of such $(\in, \in \lor q)$ -fuzzy subgroups are obtained.

1. Introduction

The notion of a fuzzy set was introduced by Zadeh, utilizing which Rosenfeld [12] defined a fuzzy subgroup. Since then this has been further studied in details by many other researchers. Among others, Das [6] characterized fuzzy subgroups by their level subgroups and Liu defined the fuzzy normality of a fuzzy subgroup. A coherent study of fuzzy normal subgroups was initiated by Mukherjee and Bhattacharya [11]. The fuzzy subgroups of a group which are invariant under various operator domains were studied by Gupta and Sarma [8], from which various fuzzy subgroups such as a fuzzy normal subgroup, a fuzzy characteristic subgroup, a fuzzy fully invariant subgroup were introduced. Sidky and Mishref [13] continued to investigate a fuzzy characteristic subgroup and to prove some of their properties.

After Rosenfeld firstly introduced the notion of a fuzzy subgroup, in 1992, Bhakat and Das ([1], [2], [3], [4]) used the idea of a fuzzy point and its belongingness to and quasi-coincidence with a fuzzy set to define a

Received June 10, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 20N25.

Key words and phrases: $(\in, \in \lor q)$ -fuzzy subgroup, $(\in, \in \lor q)$ - level subset, operator domain, \mathfrak{D} -admissible $(\in, \in \lor q)$ -fuzzy subgroup.

This research was supported by the Dongshin University research grants in 2003.

 $(\in, \in \lor q)$ -fuzzy subgroup which is a generalization of a fuzzy subgroup defined by Rosenfeld.

The object of this paper is to study the $(\in, \in \lor q)$ -fuzzy subgroups which are \mathfrak{D} -admissible for any operator domain \mathfrak{D} on G, and to obtain some of the fundamental properties of $(\in, \in \lor q)$ -fuzzy subgroups which are invariant under \mathfrak{D} .

2. $(\in, \in \forall q)$ -fuzzy subgroups

DEFINITION 2.1. (Das [6]) Let $\lambda: X \to [0,1]$ be a fuzzy subset of X and let $t \in (0,1]$. The set

$$\lambda_t = \{ x \in X | \lambda(x) \ge t \}$$

is called a *level subset* determined by λ and t. The subset $\{x \in X | \lambda(x) > t\}$ 0) is called a *support* of λ and is denoted by $Supp(\lambda)$.

Definition 2.2. (Ming and Ming [10]) A fuzzy subset of X defined by

$$\lambda(y) = \begin{cases} t & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

is said to be a fuzzy point with support x and value t and is denoted by x_t . A fuzzy point x_t is said to belong to (resp. be quasi-coincidence with) a fuzzy subset λ , written as $x_t \in \lambda$ (resp. $x_t \neq \lambda$) if $\lambda(x) \geq t$ (resp. $\lambda(x) + t > 1$). If $x_t \in \lambda$ and (resp. or) $x_t \neq \lambda$, then we write $x_t \in A_t \wedge q\lambda$ (resp. $x_t \in \forall q \lambda$). " $x_t \overline{\in} \lambda$, $x_t \overline{\in} \forall q \lambda$ " will respectively mean $x_t \in \lambda$ and $x_t \in \forall q \lambda$ do not hold.

For all $t, s \in [0, 1]$, $min\{t, s\}$ will be denoted by M(t, s).

Definition 2.3. (Bhakat and Das [3]) A fuzzy subset λ of a group G is said to be an $(\in, \in \vee q)$ -fuzzy subgroup of G if for any $x, y \in G$ and $t, s \in [0, 1],$

- (1) $x_t, y_s \in \lambda \text{ implies } (xy)_{M(t,s)} \in \forall q \lambda$ (2) $x_t \in \lambda \text{ implies } (x^{-1})_t \in \forall q\lambda.$

By [3], the conditions (1) and (2) of Definition 2.3 are, respectively, equivalent to

- (1) $\lambda(xy) \geq M(\lambda(x), \lambda(y), 0.5)$ for all $x, y \in G$
- (2) $\lambda(x^{-1}) \ge M(\lambda(x), 0.5)$ for all $x \in G$.

In the study of a fuzzy subgroup, level subsets of a fuzzy subset initiated by Das have played an important role. Bhakat redefined level subsets to be suitable for an $(\in, \in \lor q)$ -fuzzy subgroup as follows.

DEFINITION 2.4. (Bhakat [2]) Let λ be a fuzzy subset of G, and $t \in (0,1]$. Then the subset

$$\lambda_t = \{x \in G | \lambda(x) \ge t \text{ or } \lambda(x) + t > 1\} = \{x \in G | x_t \in \forall q \lambda\}$$

is said to be the $(\in \vee q)$ -level subset of G determined by λ and t.

3. \mathfrak{D} -admissible $(\in, \in \lor q)$ -fuzzy subgroups

For a group G, an operator domain on G is any nonempty class \mathfrak{D} of endomorphisms of G. In ordinary group theory we call a subset A of G admissible under \mathfrak{D} , or simply \mathfrak{D} -admissible if $f(A) \subseteq A$ for all $f \in \mathfrak{D}$. A subgroup H of G is said to be normal (resp. characteristic, fully invariant) if H is admissible under the class of all inner automorphisms (resp. all automorphisms, all endomorphisms) of G.

Bhakat introduced a \mathfrak{D} -admissible fuzzy subset in the fuzzy setting as shown in the following.

DEFINITION 3.1. Let \mathfrak{D} be an operator domain on G. A fuzzy subset λ of G is said to be admissible under \mathfrak{D} (or simply \mathfrak{D} -admissible) if

$$x_t \in \lambda$$
 implies $x_t \in \forall q \ \lambda \circ f$

for all $x \in G$ and $f \in \mathfrak{D}$.

LEMMA 3.2. (Kim [9]) For an operator domain \mathfrak{D} of G, a fuzzy subset λ of G is \mathfrak{D} -admissible if and only if

$$\lambda(f(x)) \ge M(\lambda(x), 0.5)$$
 for all $f \in \mathfrak{D}$ and $x \in G$.

For a fuzzy subset λ of G and an operator domain \mathfrak{D} on G, \mathfrak{D} -admissibility in the sense of [8] implies that in the sense of Definition 3.1. However, the converse may not be true as follows.

Let S_3 be the symmetric group of order 3 whose elements are

$$\sigma_0 = (1),$$
 $\sigma_1 = (1, 2, 3),$ $\sigma_2 = (1, 3, 2)$
 $\tau_1 = (2, 3),$ $\tau_2 = (1, 3),$ $\tau_3 = (1, 2)$

and let $\mathfrak{D} = Aut(S_3)$. Consider the fuzzy subset $\lambda: S_3 \to [0,1]$ defined by

$$\lambda(\sigma_0) = \lambda(\sigma_1) = 0.7, \quad \lambda(\sigma_2) = 0.6, \quad \lambda(\tau_1) = \lambda(\tau_2) = \lambda(\tau_3) = 0.4.$$

Since every automorphism f of S_3 is of the form $f(\sigma_0) = \sigma_0$, $f(\sigma_i) = \sigma_{i'}$, $(i, i' \in \{1, 2\})$, and $f(\tau_j) = \tau_{j'}$ $(j, j' \in \{1, 2, 3\})$, it follows

$$\lambda(f(x)) \ge M(\lambda(x), 0.5)$$
 for all $x \in S_3, f \in Aut(S_3)$.

Hence the fuzzy subset λ is \mathfrak{D} -admissible by Lemma 3.2 in the sense of Definition 3.1. However, the fuzzy subset λ is not \mathfrak{D} -admissible in the sense of [8] because the map $g: S_3 \to S_3$ defined by

$$g(\sigma_0) = \sigma_0, \ g(\sigma_1) = \sigma_2, g(\sigma_2) = \sigma_1, \ g(\tau_1) = \tau_1, \ g(\tau_2) = \tau_3, \ g(\tau_3) = \tau_2$$
 is an automorphism and $\lambda(g(\sigma_1)) = \lambda(\sigma_2) < \lambda(\sigma_1)$.

As mentioned earlier, level subsets of a fuzzy subset have played a fundamental role in the study of a fuzzy subgroup. In fact, $(\in \lor q)$ -level subsets of a fuzzy subset are very closely connected with a \mathfrak{D} -admissible fuzzy subset as shown in the following theorem.

THEOREM 3.3. (Kim [9]) Let \mathfrak{D} be an operator domain on G. Then a fuzzy subset λ of G is \mathfrak{D} -admissible if and only if $(\in \vee q)$ -level subsets λ_t is \mathfrak{D} -admissible for all $t \in (0,1]$.

DEFINITION 3.4. Let Inn(G), Aut(G), End(G) denote the classes of all inner automorphisms, all automorphisms, all endomorphisms of a group G, respectively. An $(\in, \in \lor q)$ -fuzzy subgroup λ is an $(\in, \in \lor q)$ -fuzzy normal (resp., an $(\in, \in \lor q)$ -fuzzy characteristic, an $(\in, \in \lor q)$ -fuzzy fully invariant) subgroup of G if λ is Inn(G)-admissible (resp., Aut(G)-admissible, End(G)-admissible).

As usual in Group Theory, there are $(\in, \in \lor q)$ -fuzzy characteristic subgroup of G which is not $(\in, \in \lor q)$ -fuzzy fully invariant and $(\in, \in \lor q)$ -fuzzy normal subgroup of G which is not $(\in, \in \lor q)$ -fuzzy characteristic.

EXAMPLE 3.5. (1) Let A_4 be the alternating group of order 4 and let Z(G) be the center of the group $G = A_4 \times Z_2$. Consider a fuzzy subset $\lambda: G \to [0,1]$ defined by

$$\lambda(x) = \begin{cases} 0.8 & \text{if } x \text{ is the identity } e, \\ 0.7 & \text{if } x \in Z(G) - \{e\}, \\ 0.3 & \text{if } x \in G - Z(G). \end{cases}$$

Then by Theorem 3.3, λ is an $(\in, \in \lor q)$ -fuzzy characteristic subgroup of G which in not an $(\in, \in \lor q)$ -fuzzy fully invariant subgroup.

(2) Let $G = \{e, a, b, c\}$ be the Klein's 4-group and λ be defined by

$$\lambda(e) = 0.8, \lambda(a) = 0.9, \lambda(b) = \lambda(c) = 0.3.$$

Then λ is an $(\in, \in \lor q)$ -fuzzy subgroup because $(\in \lor q)$ -level subsets are given as follows;

$$\lambda_t = \begin{cases} G & \text{if } t \le 0.3, \\ \{e, a\} & \text{if } 0.3 < t \le 0.7, \\ G & \text{if } t > 0.7. \end{cases}$$

Hence, by Theorem 3.3, λ is an $(\in, \in \lor q)$ -fuzzy normal subgroup of G but not an $(\in, \in \lor q)$ -fuzzy characteristic subgroup of G.

THEOREM 3.6. Let λ , μ , η be $(\in, \in \lor q)$ -fuzzy subgroups of G such that $\lambda \subseteq \mu \subseteq \eta$. If λ is an $(\in, \in \lor q)$ -fuzzy characteristic subgroup of $Supp(\mu)$ and μ is an $(\in, \in \lor q)$ -fuzzy characteristic subgroup of $Supp(\eta)$ then λ is an $(\in, \in \lor q)$ -fuzzy characteristic subgroup of $Supp(\eta)$.

Proof. Let f be any automorphism of $Supp(\eta)$. If $x \in Supp(\mu)$, we have

$$\mu(f(x)) \ge M(\mu(x), 0.5) > 0$$

because μ is an $(\in, \in \vee q)$ -fuzzy characteristic subgroup of $Supp(\eta)$. This means that $f(Supp(\mu)) \subseteq Supp(\mu)$. Since f^{-1} is also an automorphism of $Supp(\eta)$, we have

$$f^{-1}(Supp(\mu)) \subseteq Supp(\mu)$$

in the same way. Thus the restriction g of f to $Supp(\mu)$ is an automorphism of $Supp(\mu)$. Since λ is an $(\in, \in \lor q)$ -fuzzy characteristic subgroup of $Supp(\mu)$ we get

$$\lambda(f(x)) = \lambda(g(x)) \ge M(\lambda(x), 0.5)$$
 for all $x \in Supp(\mu)$.

On the other hand, it follows that, for $x \in Supp(\eta) - Supp(\mu)$,

$$\lambda(f(x)) \geq M(\lambda(x), 0.5) = M(0, 0.5) = 0$$

because $Supp(\lambda) \subseteq Supp(\mu)$. Therefore we have $\lambda(f(x)) \geq M(\lambda(x), 0.5)$ for all $x \in Supp(\eta)$.

THEOREM 3.7. Let λ , μ , η be $(\in, \in \lor q)$ -fuzzy groups of G such that $\lambda \subseteq \mu \subseteq \eta$. If λ is an $(\in, \in \lor q)$ -fuzzy characteristic subgroup of $Supp(\mu)$ and μ is an $(\in, \in \lor q)$ -fuzzy normal subgroup of $Supp(\eta)$ then λ is an $(\in, \in \lor q)$ -fuzzy normal subgroup of $Supp(\eta)$.

Proof. The proof is similar to that of Theorem 3.6. \Box

DEFINITION 3.8. (Bhakat and Das [4]) Let λ be a $(\in, \in \vee q)$ -fuzzy subgroup of G. For any $x \in G$, $\hat{\lambda}_x(\text{resp. } \hat{\lambda}_x): G \to [0,1]$ defined by

$$\hat{\lambda}_x(g) = M(\lambda(gx^{-1}), 0.5)$$
 (resp. $\check{\lambda}_x(g) = M(\lambda(x^{-1}g), 0.5)$)

for all $g \in G$ is called the $(\in, \in \forall q)$ -fuzzy left coset (resp. right coset) of G determined by x and G.

It follows from Theorem 4.5 of [4] that λ is an $(\in, \in \vee q)$ -fuzzy normal subgroup of G if and only if $\hat{\lambda}_x = \check{\lambda}_x, \forall x \in G$. When λ is an $(\in, \in \vee q)$ -fuzzy normal subgroup, the $(\in, \in \vee q)$ -fuzzy coset of G determined by λ and x is denoted by $\hat{\lambda}_x$. Let λ be an $(\in, \in \vee q)$ -fuzzy normal subgroup of G and F be the set of all $(\in, \in \vee q)$ -fuzzy cosets of λ in G. Then F is a group with the identity $\hat{\lambda}_e$ under the multiplication defined by

$$\hat{\lambda}_x \hat{\lambda}_y = \hat{\lambda}_{xy}, \quad \forall x, y \in G.$$

THEOREM 3.9. If λ is an Inn(G)-admissible $(\in, \in \lor q)$ -fuzzy subgroup of G, the fuzzy subset $\bar{\lambda} : \mathcal{F} \to [0,1]$ defined by

$$\bar{\lambda}(\hat{\lambda}_x) = \lambda(x), \quad \forall x \in G$$

is also an $Inn(\mathcal{F})$ -admissible $(\in, \in \lor q)$ -fuzzy subgroup of \mathcal{F} .

Proof. It follows from Theorem 4.5 of [4] that $\bar{\lambda}$ is an $(\in, \in \vee q)$ -fuzzy subgroup of \mathcal{F} . Let $i_{\hat{\lambda}_g}$ be an inner automorphism of \mathcal{F} and $\hat{\lambda}_x \in \mathcal{F}$. Then we have $\bar{\lambda}(i_{\hat{\lambda}_g}(\hat{\lambda}_x)) = \bar{\lambda}(\hat{\lambda}_g\hat{\lambda}_x\hat{\lambda}_{g^{-1}}) = \bar{\lambda}(\hat{\lambda}_{gxg^{-1}}) = \lambda(gxg^{-1}) = \lambda(i_g(x))$ where $i_g \in Inn(G)$. It follows from Lemma 3.2 that $\lambda(i_g(x)) \geq M(\lambda(x), 0.5) = M(\bar{\lambda}(\hat{\lambda}_x), 0.5)$. Therefore $\bar{\lambda}$ is an $Inn(\mathcal{F})$ -admissible $(\in, \in \vee q)$ -fuzzy subgroup of \mathcal{F} .

DEFINITION 3.10. A fuzzy subgroup λ of G is said to be of an isolated tip if $\lambda^{-1}(\lambda(e)) = \{e\}$. In this case, $\lambda(x) = \lambda(e) \Rightarrow x = e$.

THEOREM 3.11. Let λ be an $(\in, \in \lor q)$ -fuzzy normal subgroup of G of an isolated tip such that $\lambda(x) \leq \frac{1}{2}$ for all $x \in G$. Then λ is an

Aut(G)-admissible $(\in, \in \lor q)$ -fuzzy subgroup of G if and only if $\bar{\lambda}$ is an $Aut(\mathcal{F})$ -admissible $(\in, \in \lor q)$ -fuzzy subgroup of \mathcal{F} .

Proof. For $f \in Aut(G)$, we define a map $\phi_f : \mathcal{F} \to \mathcal{F}$ by $\phi_f(\hat{\lambda}_x) = \hat{\lambda}_{f(x)}$. Then we have

$$\phi_f(\hat{\lambda}_x \hat{\lambda}_y) = \phi_f(\hat{\lambda}_{xy}) = \hat{\lambda}_{f(xy)} = \hat{\lambda}_{f(x)f(y)}$$
$$= \hat{\lambda}_{f(x)} \hat{\lambda}_{f(y)} = \phi_f(\hat{\lambda}_x) \phi_f(\hat{\lambda}_y).$$

Since λ is of an isolated tip such that $\lambda(x) \leq \frac{1}{2}$ for all $x \in G$, it follows that

$$Ker(\phi_f) = \{\hat{\lambda}_x \in \mathcal{F} | \phi_f(\hat{\lambda}_x) = \hat{\lambda}_{f(x)} = \hat{\lambda}_e \}$$
$$= \{\hat{\lambda}_e\}.$$

These facts yield ϕ_f is an automorphism of a group \mathcal{F} . On the other hand, let $g \in Aut(\mathcal{F})$. Then, for every $x \in G$, there exists uniquely $g_x \in G$ such that $g(\hat{\lambda}_x) = \hat{\lambda}_{g_x}$. Hence we can define, for every $g \in Aut(\mathcal{F})$, a map $\psi_g : G \to G$ by $\psi_g(x) = g_x$. Since

$$\begin{split} \hat{\lambda}_{g_{xy}} &= g(\hat{\lambda}_{xy}) = g(\hat{\lambda}_x \hat{\lambda}_y) \\ &= g(\hat{\lambda}_x) g(\hat{\lambda}_y) = \hat{\lambda}_{g_x} \hat{\lambda}_{g_y} = \hat{\lambda}_{g_x g_y}, \end{split}$$

the fact λ is of an isolated tip implies that $g_{xy} = g_x g_y$. Hence we have $\psi_g(xy) = g_{xy} = g_x g_y = \psi_g(x) \psi_g(y)$, and $Ker(\psi_g) = \{x \in G | g(\hat{\lambda}_x) = \hat{\lambda}_{g_x} = \hat{\lambda}_e\} = \{x \in G | \hat{\lambda}_x = \hat{\lambda}_e\}$, since g is a monomorphism. Thus $Ker(\psi_g) = \{e\}$ holds because λ is of an isolated tip. Clearly ψ_g is surjective. Hence we can deduce an automorphism ψ_g of a group G from an automorphism g of a group F.

Now we suppose that λ is an Aut(G)-admissible $(\in, \in \vee q)$ -fuzzy subgroup of G. Then, for every $g \in Aut(\mathcal{F})$ and $\hat{\lambda}_x \in \mathcal{F}$, we have $\bar{\lambda}(g(\hat{\lambda}_x)) = \bar{\lambda}(\hat{\lambda}_{g_x}) = \lambda(g_x) = \lambda(\psi_g(x)) \geq M(\lambda(x), 0.5) = M(\bar{\lambda}(\hat{\lambda}_x), 0.5)$ which implies that $\bar{\lambda}$ is an Aut(G)-admissible $(\in, \in \vee q)$ -fuzzy subgroup of a group \mathcal{F} .

Conversely, we suppose that $\bar{\lambda}$ is an Aut(G)-admissible $(\in, \in \vee q)$ -fuzzy subgroup of \mathcal{F} . By Lemma 3.2, for every $f \in Aut(G)$ and $x \in G$, we have $\lambda(f(x)) = \bar{\lambda}(\hat{\lambda}_{f(x)}) = \bar{\lambda}(\phi_f(\hat{\lambda}_x)) \geq M(\bar{\lambda}(\hat{\lambda}_x), 0.5) = M(\lambda(x), 0.5)$, which proves that λ is an Aut(G)-admissible $(\in, \in \vee q)$ -fuzzy subgroup of a group G.

References

- [1] S. K. Bhakat, $(\in \forall q)$ -level subset, Fuzzy Sets and Systems 103 (1999), 529–533.
- [2] _____, (∈, ∈ ∨q)-fuzzy normal, quasinormal and maximal subgroups, Fuzzy Sets and Systems 112 (2000), 299–312.
- [3] S. K. Bhakat and P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems **51** (1992), 235–241.
- [4] _____, $(\in, \in \lor q)$ -fuzzy subgroup, Fuzzy Sets and Systems 80 (1996), 359–368.
- [5] _____, Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems 81 (1996), 383–393.
- [6] P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl. 85 (1981), 264–269.
- [7] V. N. Dixit, R. Kumar and N. Ajmal, Level subgroups and union of fuzzy subgroups, Fuzzy Sets and Systems 37 (1990), 359-371.
- [8] K. C. Gupta and B. K. Sarma, Operator domains on fuzzy groups, Inform. Sci. 84 (1995), 247–259.
- [9] D. S. Kim, $(\in, \in \lor q)$ -fuzzy subgroups, Far East J. Math. Sci. 8 (2003), 161–172.
- [10] P. P. Ming and L. Y. Ming, Fuzzy topology 1: Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599.
- [11] N. P. Mukherjee and P. Bhattacharya, Fuzzy normal subgroups and fuzzy cosets, Inform. Sci. 34 (1984), 225–239.
- [12] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.
- [13] F. I. Sidky and M. Atif Mishref, Fully invariant, characteristic, and S-fuzzy subgroups, Inform. Sci. 55 (1991), 27-33.

Department of Mathematics, Dongshin University, Chonnam 520-714, Korea

E-mail: dskim@dsu.ac.kr