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ON ZEROS OF CERTAIN SUMS OF POLYNOMIALS

SEoN-HoNG KiMm

ABSTRACT. A convex combination of two products with same de-
gree of finitely many finite geometric series with each having even
degree does not always have all its zeros on the unit circle. How-
ever, in this paper, we show that a polynomial obtained by just
adding a finite geometric series multiplied by a large constant to
such a convex combination has all its zeros on the unit circle.

1. Introduction

Let u be a positive integer. Define, for positive integers a1, az, - , @y,
u a;
2% —1
Falya%"' ,ay, (Z) = H -1
J=1

Suppose that, for all j with 1 < j < u, a; and b; are positive integers
such that 375, a; =370, b; = n. If u = 1,2, all zeros of

<I>u(z) = Fal,ag,m A (Z) + Fbl,b%... Jbu (Z)

lie on the unit circle. However, an example for u = 3: The polynomial
equation

(21 -1DEB -1+ 2= 1) -1) (" -1)=0

has four nonreal zeros with modulus # 1, tells us that, for some a;’s
and b;'s with 3%, a; = 3, bj = n, not all zeros of ®, (u > 3) lie on
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the unit circle. In this paper, we consider not just above sums of two
polynomials but convex combinations of them. Above example implies
that, for u > 3, not every convex combination

(1) (1 =7)Fq, . q,(2) + 7 Fpy . b, (2)

has all its zeros on the unit circle. However, in Section 2 of this paper,
we show that a polynomial obtained by adding a finite geometric series
(2P %+ 2" % ...+ 1) (with the same degree with both Fy, ... 4, (2)
and Fy, ... b, (2)) to (1) has all its zeros on the unit circle provided that,
for all j, a; and b; are positive odd integers and ¢ is large enough. Here
we note that Fy, ... o, (2z) and Fp, ... 5, (%) are products of u finite geomet-
ric series. Basic tool for our proof is the Chebyshev transformation. We
state the definition of the Chebyshev transformation and its properties
in Section 2 without proof. For their proofs, see [1].

2. Preliminaries

We denote by R, the set of all real semi-reciprocal polynomials

2n

p(z) = Zajzj, a; =azn—; (0<j<n—1)
=0

of degree at most 2n, and o by the zero polynomial. Let T} and U; be
the jth Chebyshev polynomials of the first kind and of the second kind,
respectively.

PROPOSITION 2.1. Let p(z) = E?Zo a;z? € Ry, and p # o. Suppose
that
Q2p = Q2p—-1 ="+ = Qnykt+l = 0=ap_g—1 = -+ = ao,
but antr = an-k # 0

for some k, 0 < k < n. Then p(z) has the decomposition
k
(2) p(2) = ansr2"F [[ (22 — 052 + 1),
=1

where a; € C(1 < j < k) are the zeros of the polynomial a, +
Z;-c:l anyT5(5) and the convention H?Zl bj = 1 (for p(z) = z™) is
adopted. If p € Ra, is a reciprocal polynomial of degree 2n, then (2)
holds with k = n.
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DEFINITION 2.2. The Chebyshev transform of a polynomial p €
Ran — {0} having the decomposition (2) is defined by

k
p(x) = ansk | [(@ — o))

J=1

(with H?Zl b; = 1 (for p(z) = z™) adopted) while, for the zero polyno-
mial p = o, let
To(z) = 0.

PROPOSITION 2.3. The Chebyshev transform T is an isomorphism
of the real vector space R, onto the set of all polynomials of degree
< n with real coefficients.

LEMMA 2.4. Let p be a real reciprocal polynomial of degree 2n. Then
all zeros of p are on the unit circle if and only if all zeros of its Chebyshev
transform T p are in the closed interval [-2,2].

3. Results and proofs
The following lemma will be used in the proof of Theorem 3.2.
LeMmMA 3.1. For p1,p2,- - ,Pn € Ran — {0}, we have

Tpipa-pn=Tp1Tp2 - Tpp.

Proof. It is enough to show that, for p,q € Ra, — {0}, we have Tpg =
Tp7Tgq. Suppose that

n k
p(z):Zajzj = Qpii2" H 22 —ajz+1) € Ry — {0}

j=1

and

bl

2n
= b7 =bonz"” Hz — Bjz+1) € Ran — {0},

where a;, 8; € C, apqyx # 0 and b, p # 0 for some k, h with 0 < k, h <
n. Then

k
Tp(e) = ansi [[ (@ — o)

j=1
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and
h
Tq(z) = bnsn [ [ (x — B)).
j=1

Hence

k+h

Tp(z) - Tq(z) = ansebusn || (@ =),
7j=1

where v; = for 1 <j<kand v, =8;_p for k+1<j<k+h Now

k h
p(2)q(2) = @nibpinz®™F " ]:I(z2 —ajz+1) I_[(z2 - Bijz+1)
Jj=1 j=1
k+h
= Gnykbnnz?VF R H (22 — 42+ 1).
j=1
Hence
Tpg=TpTq.

Now we prove our main theorem.

THEOREM 3.2. Let u be an integer > 2. If, for all j with 1 < j < w,
a; and b; are positive odd integers such that }37_, a; = 3°5_, b; = n,
then, for

It > =
sin
all zeros of

Gr(2) = (A =7)Fay o 0 (2) 4 1 Foy o pu () + (27542 4 4 1)

lie on the unit circle.

Proof. With the notation v;(z) = 27 + 2971 +.-. +1, j > 0, we have

Gr(z2)=(1-r) Hvaj_l(z) +r Hvbj_l(z) + tup—u(2),
Jj=1 Jj=1
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and, by Proposition 2.3 and Lemma 3.1, we have

TG(z) = (L—7) [[ Tva,-1(2) + 7 [] Tve,-1(2) + t Ton_u(z).
j=1

j=1
But
x x
(3) Ton-u(e) = Ungs (5) +Uszea (3)-
In fact,
n—u 2
Un—u(2) = (z —~ en—u+1)
i=1
n;u 2jmi 2jmwe
ST (s o) (- - o)
j=1
= 9
= <22—2cos —JLz+1)
e n—u+1

and s0 Tup—y(x) = H]E: (:v — 2cos —%&) On the other hand, we

observe that

Sin ELHy
4 Unu n—u = 2
(4) nou (cosy) + U__z___l(cos ) nl

and the right side is zero if and only if y = ﬁ—%rl (4 € Z - {0}),

so all zeros of U% (%) + Un_;_u_1 (%) are 2cos ﬁ%%”ﬁ, 1<) <255

Hence both sides of (3) are monics which have the same zeros, and so
i1

they are identical. Now, for z = z; = 2cosy;, where y; = %ﬁ_—l—%r,

0 <j < 25%, we have, by (3) and (4),

sin (j+3) 7 (=1)

Tun_u(z;) =

sin =5 sin 3

and 0 < sin % <1 with

. .Yy .
min sin— =8in ————.
0<j< By 2 2n—u+1)
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On the other hand, for

t >

we have

k=1 k=1
Yol ]
<(1-r) H — T H 7
g SR & oy SIn F
1 i 1 1
" sin®"! ¥ sin %J ~ sin%! 7(77—11&_1) sin %’
<[t Sin% = |t] |T'Un—u(xj)|~

Hence the sign of 7G.(x) is sgn (—1)7 sgn t for z = z;, where 0 <
J < ®5%, which means that 7G, has "5 distinct zeros in the interval

[—2,2]. Applying Lemma 2.4 completes the proof. O

REMARK 3.3. In Theorem 3.2, without restriction of all a; and b;
odd, G,(z) still seems to have all its zeros on the unit circle for some
large t. But, for the case other than all a;’s and b;'s odd, our tool
“Chebyshev transformation” does not seem to be suitable for proof.
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