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OSCILLATION OF PARABOLIC NEUTRAL
DELAY DIFFERENCE EQUATIONS

S. H. SAKER

ABSTRACT. Some new oscillation criteria for parabolic neutral de-
lay difference equations corresponding to two sets of boundary con-
ditions are obtained. Qur results improve the well known results in
the literature.

1. Introduction

Qualitative theory for discrete dynamic systems with one dimension,
i.e., ordinary difference equations which parallel the qualitative theory
of differential equations, has been investigated by several authors (see [1,
2, 10]) and the references cited therein. On the other, few papers have
been devoted to the qualitative theory of the nonlinear discrete dynamic
systems involving functions of two or more independent variables, i.e.,
partial difference equations (PDEs) (see [17, 21]) and the references cited
therein. In fact, partial difference equations arise in the approximation
of solutions of partial differential equations by finite difference methods,
random walk problems, the study on molecular orbits, mathematical
physics problems and other problems in population dynamics, we refer
the reader to [5, 6, 10, 15]. In this paper, to develop the qualitative
theory of partial difference equations, we shall consider the following
parabolic nonlinear neutral delay difference equation

(1.1) D2(Ymn = PaYmn—r) + O a5nf Wmmo:)
icl
= T'nVQym—l,n—f-l + Z Rj,nvzym—l,n—i-l—'yj,
jed
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where I := {1,2,...,1p}, J == {1,2,.. -, Jo}, {ym,n} = {ymmm,---,ml,n}
which is defined in 2xN,,;, N, = {ng,no+1,...} and Q ={p§1), e ,pg\}l)l}

X .. .{p&l), . ,pg\l}l} is a convex connected solid net, and every pgj ez

(for the definition of the convex connected solid net, we refer to [17]).

We assume throughout this paper that:

(h1) Tn € Npy — R* and R, € J x Ny, — RT; .

(02) ¢, € T x Q x Npy — R¥, g, , = minmen{ghom}, for i € I and
n € Npg;

(h3) 7>1,0;€ I - Ny, v, € J - Ny

(h4) f; € C(R,R) is convex, ufij(u) > 0 for u # 0, i’i—u) >k >0 for
i1el,

(h5) p, € Np, — R*, and there exists a positive integer K > 0 such
that

pr+ir <1, fort=0,1,2,....
We write V2 is the discrete Laplacian operator, which is defined by
l
VZ?/m—l,n—%—l = Z A%yml,mz,.,.,mi_l,mi—l,...,ml,n+17 where A? is the a par-
i=1

tial difference operator of order two, i.e., A2y n = Aj(Aiymn), A1Ymmn

=Ym+1ln — Ymn AZym,n = Ym,n+1 — Ym,n-
Consider the initial boundary value problem (IBVP) (1.1) with two
kinds of the boundary conditions

(B1) ANYm—1,n, =0, on O x Ny,

(B2) ANYm—1n + ImaYmn =0, on 90 x Ny,
and the initial condition (IC)

(12) Ym,s = Hm,s» for ng — M < s < nyg,

where ANYm—1,, is the normal difference at (m,n) € 9§ x Ny, which is
defined by

ANYm-in= D Oitmn—Dmaan)= D (Alymn)
all m+1¢Q all m+1¢Q

and M = max{r,0y, v;: i € I and j€ J) and gmn € O X Npy — R*.

By a solution of initial boundary value problem (1.1), (B1), (1.2) (for
short IBVPB1) we mean a sequence {¥mn} which satisfies Eq.(1.1) for
(m,n) € Q x N, satisfies (B1) for (m,n) € 02 x Ny, and satisfies IC
(1.2) for (m,n) € Q x {no — M,...,no}. The definition of the solution
of the initial boundary value problem (1.1), (B2), (1.2) (IBVPB2) is
defined similarly.
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Our objective in this paper is to present sufficient conditions which
imply that every solution {y, »} of IBVPB1 and IBVPB2 are oscillatory
in £ xNp,, in the sense that there does not exist an n; € Ny, such that
Ymmn > 001 Yy n < 0for n € Ny, . In Section 2, we shall consider IBVPB1
and IBVPB2 will be considered in Section 3. Our results in Section 3
improve the results obtained in [17].

For the oscillation of ordinary neutral delay difference equations we
refer the reader to [4, 8, 11-14, 16, 19, 22] and the references therein.

2. Oscillation of IBVPB1

In this section we will establish some oscillation criteria for IBVPB1.
Before stating our main results we need the following lemma.

LEMMA 2.1 [17]. (Discrete Gaussian formula). Let 2 be a convex
connected solid net. Then we have

> Vmoint1 = Y. ANUm-1nt1.
mes) meofd

Throughout this paper, we will assume that
o= rflel;l{al} and @, = ; kqin.

THEOREM 2.1. Assume that (h1)-(h5) hold, and every solution of
the delay difference equation

(2.1) Azy + Qnzpn—e =0, n €Ny,
oscillates. Then, every solution of IBVPBI is oscillatory in €2 x Ny,.

Proof. Suppose to the contrary that {ym} is a nonoscillatory solu-
tion of IBVPB1. Without loss of generality, we may assume that there
exists n1 € Ny, such that ymn—a > 0 for all n € N,;;. Summing the
equation (1.1) over , we have

A2( Z Ymn — Dn Z ym,n-r) + Z Z qs.;),nf(ym,n—ai)

mes2 mef) 1€l mef)
2 2
(22) =Y Vymoams+ Y _Rin D VUm-1miiv,,
mesd jedJ mesd

for (m,n) € Q x IN,,.
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From Lemma 2.1 and (B1) we obtain

(2.3) Z V2ym_1,n+1 = Z ANym—l,n+1 = 0, forn e Ian,
mesd meosl

2
Z \% Ym—1n+1—;

mes}

Z ANym—l,n+1—'yj =0, forjeJandnc an.
meof
From (h2) and using the Jensens’s inequality, we have

Z Qr(ri),nf(ym,n—ai) 2 Gin Z f(Ymmn—a;)

(2.4)

me me
(2.5) ‘
_anZf( Zymn az>|Q| fori €I and n € N,,.
me mEQ
Set
(2'6) zn |Q| Z ymn
meN
Thus, we obtain by (h4), (2.2)-(2.6) that
(2'7) A(Zn _pnzn—‘r) + Z k¢inzn—o;, <0,
i€l

where A is the ordinary difference operator. Set

(28) Tn = Zn — Pn2n—1,

then by (h2) and (h4) Az, < 0 and Lemma 1 in [8, 14] yields that
Tp > 2z > 0, for n € N,,,. Now, since {z,} is positive and nonincreasing

sequence and being o < o; for all i€ I, then, (2.7) and (2.8) imply that
Zn is a positive solution of the delay difference inequality

Az, + Z kg; nTn—o < 0.
i€l
But, then by Lemma 1 in [23] the delay difference equation (2.1) has an
eventually positive solution also, which contradicts the assumption that
every solution of Eq.(2.1) oscillates. Then every solution of IBVPBI is
oscillatory in © x Np,. a

Theorem 2.1 shows that the oscillation of IBVPBI is equivalent to
the oscillation of the delay difference equation (2.1). Thus, we can use
the results of [7, 9, 18, 20, 3] to obtain some sufficient conditions for
oscillation of all solutions of IBVPB1 in @ x N,,,. Now, by applying
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Theorem 2.1 and using the results in [7, 9, 18, 20, 3] respectively we
have the following results.

COROLLARY 2.1. Assume that (h1)-(h5) hold. If

o

(2.9) limsupn_,ooZQn_i > 1,
i=0
or
o o
(210) lim 1nfn_,oan > m,
or
1< o’

2.11 liminf, . — — > .
( ) 11 101y, OOO_;Q'" i > (0_+1)U+1

Then every solution of IBVPBI is oscillatory in {2 X Ny .
COROLLARY 2.2. Assume that (hl)-(h5) hold. If

g
liminf,, c0 Z Qn_i > L >0,
=1
and

L2
(2.12) limsup,,_,o,Qn > 1 — e

Then every solution of IBVPBI is oscillatory in £ x Ny,.
COROLLARY 2.3. Assume that (h1)-(h5) hold. If

. 0.0'+1

0 < a=liminf, ;Qn—i < m,

and
o2 a2
(2.13) lim sup,, oo Y Qn-i > 1— s
=0
or
o

. 1—a—+v1-2a-—a?

(2.14) lim sup,,_, o Z Qn-i>1- 5 .

i=0
Then every solution of IBVPBI is oscillatory in  x N .

In the following theorems, we give new oscillation criteria for IBVPB1
when none of the conditions (2.9)-(2.14) are satisfied.
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n+o
THEOREM 2.2. Assume that (h1)-(h5) hold. If >, Q; >0 and
i=n+1

(e 9] n+o 17%7
(2.15) > @n (Z Qi> (0+1)—0| =oo.

n=ng i=n+1
Then every solution of IBVPBI is oscillatory in 2 x Np,.

Proof. We proceed as in the proof of Theorem 2.1, we may assume
that IBVPBI1 has a nonoscillatory solution {y,,»} . Without loss of gen-
erality, we may assume that there exists n; € Ny, such that ym, n,—p >0
for all n € N,,,. Then by Theorem 2.1 the delay difference equation (2.1)
has a positive solution for all n > n;. Define the sequence {\,} by

(2.16) Ay = — 220

Tn

Since {z,} is a nonincreasing sequence, we have 0< A\, < 1 for n > n;.
n—1

From (2.16) we have #1 =1 — ), and 2222 = J] (1 —X;)~". Then
1=n—o
by (2.1)

n—1

A=Qn [ A-2)7"

i=n—o
By employing the arithmetic mean-geometric inequality, we have

1 n—1 -
(2.17) An > Qn <1 - > )\i> .

=n—o

n+o
Let b, = > 4. Then (2.17) can be rewritten as
i=n+1

n—1 -0
1
(2.18) An > Qn <1 - Ebn > ,\i) .

i=n—o

By using the inequality
o+1)— O’]

r

faal
— re
(2.19) [1 - érw] >z+ for r >0 and z < %,

in the right hand side of (2.18), we obtain

n—1
)\n > Qn I:E:l; Z )\i+i ((bn);lrf(o"i'l) _U)jl .

=n—a
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It follows that

1

n—1 n+o T+1
—Qn D> Ai2Qn <Z Qz) (c+1) -0

i=n—o i=n+1

Then, for N > n;,

(2.20)

N N n—1 N n+o

Z)\nbn_’ZQn Z )‘12 an (Z Qt) (0+1)—0
n=ni n=ni i=n—o n=mni i=n+1

Interchanging the bound of summation, we find
N—-o-1 i+o

n=ni i=n—o n=ni n=i
(2.21) N—-o-1 i+o N—-o-1 n+o
DN = 3 MW}
i=ny n=i+1 N=mni i=n+1

Combining (2.20) and (2.21) yields that

n+o N n+o 1
(2.22) Z MY Q=) Qn (Z Qz) (@+1) -0

n=N-o i=n+1 n=ni i=n-+1

Summing (2.1) from n+ 1 to n + o, we get

n+o

Tnt+lto — Tntl + Z Qizi—s =0.
i=n+1

Using the fact that {x,} is positive and nonincreasing, we have

n+-o

Tn+1 > Xy Z Qi,
i=n+1

and so

n+o
(2.23) Y Qi<

t=n+1
eventually. Then, form (2.22) and (2.23) we have
(2.24)

N

N n+o L1
)\nEZQn (Z Qz) (6+1)—0c | woc0as N — oo
n=ni

n=N-o =n+1
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by (2.15). But, from the definition of A, we have

,\n:<1_xL+l>_
Tn

Hence,
N N -
Yo=Y (1— ”+1> <o+1,
Tn
n=N-o n=N-o
and this contradicts (2.24). Then every solution of IBVPBI is oscillatory
in @ x Ny,. O

From the above results it is clear that the oscillation criteria de-
pending only on the sequences {g;,}. In the following theorems we
present some infinite integral conditions on the combined growth of the

sequences {p,}, and {g;»}.

n+o
THEOREM 2.3. Assume that (hl)-(h5) hold. If ) A; >0 and

i=n+1
e} n+o 1_-|1-—a
(2.25) > An ( > Ai> (c+1)—0o| = o0,
n=ng i=n+1

where A, = Y k@in(1 + Pn—s,). Then every solution of IBVPBI is os-
i€l
cillatory in §2 x Ny,.
Proof. We proceed as in the proof of Theorem 2.2, to obtain (2.7).
Defining again the sequence {z,} by (2.8), then we have {z,} is positive
and nonincreasing sequence. So that (2.7) implies that

(2.26) Az, + Z kGinzn—o, <0.
iel
Hence from (2.8) and (2.26) we have

Axn < - Z in,n [mn—ai + pn—aizn-r—ai]

i€l
< - E in,nfEn—ai - § in,npn—aizn—‘r—ai-
i€l el

From (2.8) again and the last inequality, we have

(2.27) Az, < — Z kginTn—o0, — Z kG nPrn—o;Tn—o,—7-
i€l el
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Since {z,} is nonincreasing sequence

(2.28) Az, + Z kgin[l 4+ Prn—o;]Tn-o < 0.
i€l

Defining again {\,} as before, then (2.28) implies that

(2.29) An > Ap 22

Tn

Then as in Theorem 2.2 we obtain

n—1 n—1 -0
(230) >4 [] 1-A)1>4, (1 . ,\i> .

(2
1=n—aq

=Nn—o

The remainder of the proof is similar to that of Theorem 2.2 and hence

is omitted. [

n+o
THEOREM 2.4. Assume that (h1)-(h5) hold. If > B; >0 and
1=n+1
1
[e.9) n+o I+o
(2.31) Z B, ( Z Bl-) (c+1)—0| = o0,
n=ng i=n+1

where By, = > kq; n(1+ Pn—o,Pn—r-0,). Then every solution of IBVPBI
icl
is oscillatory in 2 x Ny, .
Proof. Following the proof of Theorem 2.3 we obtain (2.28), which
by using (2.8) implies that

(2.32) Az + Y kGin(1+ Ppoo,Pr—r—o,)Tn-c < 0,
el
(2.33) An > Bp2r=o
In

Then as in Theorem 2.2 we have

n—1 1 n—1 i
-1 _ = )
A= B, [ =N an(1 UZ&) .

i=n—o i=n—o
The remainder of the proof is similar to that of Theorem 2.2 and hence
is omitted. O

In view of the results established in [3, 7, 9, 18, 20] and the fact that
every solution of IBVPB1 is oscillatory in 2x Ny, when each one of (2.28)
and (2.32) has no eventually positive solution, we can present some other
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oscillation criteria for of all solutions of the IBVPB1 in © x N, . The
details are left to the reader.

. n+o
THEOREM 2.5. Assume that (h1)-(h5) hold. If Y G, >0 and

i=n+1
1
oo n+o 1+o
(2.34) > Ga (Z G) (c+1)~0o| =00,
n=ng i=n+1 ’

N

where Gn = Y [](3C kGinPn—o,~(j-1)-)- Then every solution of IB-
1=0j=1 i€l

VPBI is oscillatory in €2 x Np,.

Proof. Following the proof of Theorem 2.3 we obtain
Az, < — Z in,nzn—oi < - Z in,n [mn—ai + Pn—o; Zn—'r-ai]

i€l iel
< - Z k%’,nxn—ai - Z k(h',npn—aizn—'r—cri-
el el
Hence
(2.35) Azy + Z kginTn—g; + Z kqinPn-o;#2n—r-0; <0,
i€l i€l

and then by induction we see that

Az, + Z z kqin H Pn—o;—(j-1)rTn—o;—ir

=0 iel
N+1
+ Z kqi,n H Pn—o;~(j-1)1%n—a;—(N+1)T <o
iel j=1

Hence for n sufficiently large, and 7 < N

(236) Az, + Z Z k(h n H Pn—o;—(j-1)7 | Tn—o;—Ir <0.

l=m i€l

Since Az, < 0 and n-o > n — ¢ —i7 for all i, we have

(2.37) Az, + Zqumen —oi—(i-1)7 | Tn—o < 0.

l=m 1€l

The remainder of the proof is similar to that of Theorem 2.2 and the
details are left to the reader. O
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3. Oscillation of IBVPB2

In this section we will establish some new oscillation criteria for IB-

VPB2.

THEOREM 3.1. Assume that (hl)-(h5) hold, and every solution of
the delay difference equation (2.1) oscillates. Then every solution of

IBVPB?2 is oscillatory in §2 X Np,.

Proof. Suppose to the contrary that {ym n} is a nonoscillatory solu-
tion of IBVPB2. Without loss of generality, we may assume that there
exists n1 € Ny, such that y,n—as > 0 for all n € N,,;. Summing the

equation (1.1) over Q, we have

A2( Z Ym,n — DPn z ym,n—T) + Z Z Q%),nf(ym,n—ai)

mef meQ i€l meN
9 2
(3.1) =7y, Z VYm—1n+1 + ZRj’" Z \Y Ym-Ln+l—v,;
me ieJ meN

for (m,n) € @ x Np,.
From Lemma 2.1 and (B2) we find that

2
Z \Y% Ym—1,n+1
mes

(32) = Z ANym—l,rH-l = Z Imn+1Ymn+1 <0,
meo) meoN

for n € N,

2
Z Vv ym—l,n+1—'yj

me

(3.3) = Z ANym—l,n+1—'yj = - Z Imn+1Ym,nt1—y, <0,
meagnN meoN
forje Jand n e N, .

From (h2) and using the Jensens’s inequality, we have

Z Qr(rit),nf (ym,n—ai )

mes)

(34) > Gin Z f(ym,n_oi) > Qin Z f <|?12_| Z ym,n—m) !Q|)

me meN meN
forall 2 € I and n € Ny,,.
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Set
1
(35) Zp = 757 Z Ym,n-
lﬂl mes)
Thus, we obtain by (h4), (3.1)-(3.5) that
(3'6) A(zn _pnzn—f) + Z kginzn—o; <0
el

where A is the ordinary difference operator. Define {z,} as in (2.8),
then as in the proof of Theorem 2.1 we have Az, <0 and z, > 2z, > 0,
for n € N,,,, and z,, is a positive solution of the delay difference equation
(2.1), which contradicts the assumption that every solution of Eq.(2.1)
oscillates. Then every solution of IBVPB2 is oscillatory in Q x N,,,. 0O

Theorem 3.1 shows that the oscillation of the IBVPB2 is equivalent
to the oscillation of the delay differential equation (2.1). Thus, we can
use the results of 7, 9, 18, 20, 3] to obtain several oscillation criteria for
IBVPB2. Now, by applying Theorem 3.1 and using the results in [7, 9,
18, 20, 3] respectively we have the following results.

COROLLARY 3.1. Assume that all the assumptions of Corollary 2.1
hold. Then every solution of IBVPB2 is oscillatory in {0 x Ny,.

COROLLARY 3.2. Assume that all the assumptions of Corollary 2.2
hold, except that the condition (B1) is replaced by (B2). Then every
solution of IBVPB?2 is oscillatory in 2 x Ny,.

COROLLARY 3.3. Assume that all the assumptions of Corollary 2.3
hold, except that the condition (B1) is replaced by (B2). Then every
solution of IBVPB2 is oscillatory in £ x Ny,. :

We note that Theorem 3.1 and Corollaries 3.1-3.3 improve Theorems
3.1 and 3.2 in [17].

In the following theorems, we give new oscillation criteria for IBVPB2
when none of the conditions (2.9)-(2.14) are satisfied. The details are
left to the reader.

THEOREM 3.2. Assume that all the assumption of Theorem 2.2 hold,
except that the condition (B1) is replaced by (B2). Then every solution
of IBVPB2 is oscillatory in {2 X Np,.

THEOREM 3.3. Assume that all the assumption of Theorem 2.3 hold,
except that the condition (B1) is replaced by (B2). Then every solution
of IBVPB?2 is oscillatory in X Ny,.
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THEOREM 3.4. Assume that all the assumption of Theorem 2.4 hold,

except that the condition (B1) is replaced by (B2). Then every solution
of IBVPB2 is oscillatory in £} x Np,.

THEOREM 3.5. Assume that all the assumption of Theorem 2.5 hold,

except that the condition (B1) is replaced by (B2). Then every solution
of IBVPB?2 is oscillatory in £ x Ny,.
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