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PSEUDO-PARALLEL REAL HYPERSURFACES
IN COMPLEX SPACE FORMS

GUILLERMO A. LOB0OS AND MIGUEL ORTEGA

ABSTRACT. Pseudo-parallel real hypersurfaces in complex space
forms can be defined as an extrinsic analogues of pseudo-symmetric
real hypersurfaces, that generalize the notion of semi-symmetric real
hypersurface. In this paper a classification of the pseudo-parallel
real hypersurfaces in a non-flat complex space forms is obtained.

1. Introduction

The class of isometric immersions in a Riemannian manifold with par-
allel second fundamental form is very wide, as it is shown, for instance,
in the classical Ferus’ paper [12]. Certain generalizations of these im-
mersions have been studied, obtaining classification theorems in some
cases. We recall the following facts found in the literature.

1. Given an isometric immersion i : M — M, let h be the second
fundamental form and V the van der Waerden-Bortolotti connec-
tion. Then, J. Deprez defined the immersion to be semi-parallel if
R(X,)Y) -h=(VxVy —VyVx — V[X,y])h = 0, for any tangent
vectors X,Y to M. J. Deprez mainly paid attention to the case of
semi-parallel immersions in real space forms (see [7] and [8], [9]).
Lumiste in [13] showed that a semi-parallel submanifold is the sec-
ond orden envelope of the family of parallel submanifolds. In the
case of hypersurfaces in the sphere and the hyperbolic space, F.
Dillen showed that they are flat surfaces, hypersurfaces with paral-

lel Weingarten endomorphism or rotation hypersurfaces of certain
helices [11].
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2. The first author et al. ([1], [2]) generalized the works of J. De-

prez and F. Dillen. They introduced the notion of pseudo-parallel
immersions into space forms as an extrinsic analogue of pseudo-
symmetric manifolds (in the sense of R. Deszcz, [10]) and as a
direct generalization semi-parallel immersions.

Given M a hypersurface in a real space form, let R and A
be the curvature tensor and the Weingarten endomorphism of M
respectively. Given X,Y in TM, let X AY denote the operator
of TM given by Z — (Y, Z)X — (X, Z)Y. It can be extended to
act as a derivation on A as follows: (X AY - A)Z = (X AY)AZ —
A(X ANY)Z, for any Z in TM. Then, a hypersurface M in a real
space form is called pseudo-parallel if there is a smooth function
f on M such that

RX,Y) - A=fXAY - A,

for any X,Y in TM. The classification of pseudo-parallel hyper-
surfaces in real space forms were obtained by the first author et
al. in [2], describing them as quasi-umbilic hypersurfaces [4] or
cycloids of Dupin [5].

The submanifolds in a complex space form M "(c), n > 2, of con-
stant holomorphic sectional curvature 4c, with parallel second fun-
damental form were classified by H. Naitoh in [17]. As a result,
the second fundamental form of a real hypersurface M in Mn (¢),
n > 2, 4¢ # 0, can never be parallel. This means that the Wein-
garten endomorphism A of M cannot be parallel, i.e., VA # 0,
where V is the Levi-Civita connection of M extended to act on
tensors as a derivation. Thus, several authors have considered
weaker conditions on real hypersurfaces in non-flat complex space
forms. N

S. Maeda [14] studied semi-parallel real hypersurfaces in M™(c),
for ¢ > 0 and n > 3. He translated the Deprez’s definition to the
following one, by making use of the Weingarten endomorphism A
and the curvature tensor R of the real hypersurface

R(X,)Y) A= (VxVy - VyVx - Vixy))4A =0,

for any tangent vectors X,Y to the real hypersurface. However,
this condition is too strong since S. Maeda obtained that no real
hypersurface in Mn(c), for ¢ > 0 and n > 3, satisfies it. R.
Niebergall and P. J. Ryan [18] also proved the non-existence of
semi-parallel real hypersurfaces in M 2(c), for 4c # 0. Later, the
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second author in [20] made a proof for 4c # 0 and n > 3, showing

that there are no real semi-parallel real hypersurfaces in M "(c),
4c# 0 and n > 2.

Thus, it is natural to find a weaker condition than the semi-parallelism
one that allows to find a classification theorem. In this paper, we define
and classify the pseudo-parallel real hypersurfaces in a non-flat complex
space form.

DEFINITION 1.1. A real hypersurface M in M "(c) is called pseudo-
parallel if there is a real valued smooth function f on M such that

(1.1) RX)Y)-A=fXANY-A
forany X, Y € TM.

Moreover, condition (1.1) can also be regarded as an extrinsic ana-
logue of pseudo-symmetry R(X,Y)-R = fX AY - R, that for f =0
is the condition of semi-symmetric -studied recently for some geometers
in complex space forms, see for example [18]. The classification of the
above real hypersurfaces is displayed in the next theorem.

‘THEOREM 1.2. Let M be a connected pseudo-parallel real hypersur-
face in M™(c), n > 2, ¢ = %1, with associated function f. Then f is
constant and positive, and M is one of the following real hypersurfaces:

i) If c = +1, then f = cot?(r), for 0 < r < 7/2, and M is an open

subset of a geodesic hypersphere of radius r.
ii) If c = —1, then
a) 1 < f = coth2(r), for r > 0, and M is an open subset of a
geodesic hypersphere of radius r;
b) f =1, and M is an open subset of a horosphere;
¢) 0 < f =tanh®(r) < 1, for r > 0, and M is an open subset of
a tube of radius r over a totally geodesic CH™ 1.

2. Preliminaries

Let M™ (c) be a non-flat complex space form endowed with the metric
(,) of constant holomorphic sectional curvature 4c # 0 and complex
dimension n > 2. For the sake of simplicity, if ¢ > 0, we will only use
¢ = +1, and we will call it the complex projective space CP", and if
¢ < 0, we just consider ¢ = —1, so that we will call it the complex
hyperbolic space CH™. Let M be a connected C° real hypersurface in
M"™(c), ¢ # 0, n > 2, without boundary. Let N be a local unit normal
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vector field to M. If J is the almost complex structure of M™(c), we
define { = —JN. Usually, the vector field £ is called the structure or the
Reeb vector field of M. The Levi-Civita connection of M™(c) and M
will be denoted by V and V, respectively. The Gauss and Weingarten
formulae are

VxY = VxY+(AX,Y)N,

2.1
21) VxN = -—-AX,

for any X,Y € TM, where A denoted the Weingarten endomorphism of
M. A local tangent vector field X is called principal if it is a eigenvec-
tor of A everywhere, and its associated eigenfunction is called principal
curvature function. Given a point p € M and a principal curvature A,
we write Ta(p) = {X € T,M : ApX = A(p)X}. This vector subspace is
called the principal distribution associated with A at p. The dimension
of the principal distribution is known as the multiplicity of the princi-
pal curvature. The multiplicity of a principal distribution depends on
the point, although there is a dense open subset on which it is locally
constant. Given a vector field X tangent to M on a neighborhood of
a point p € M, we put JX = X + n(X)N, where X and n(X)N
are the tangential and the normal component of JX respectively. Thus,
¢ is a skew-symmetric tensor of type (1,1) and 7 is a 1-form on M.
Furthermore, £ is a locally defined vector field tangent to M. The set
(p,&,m,(,)) is called an almost contact metric structure on M, whose
elementary properties are

nX)=(X,¢), ¢V*=-I+10¢,
(WX, Y)+(X,0Y) =0, (pX,0Y)=(X,Y)—n(X)n(),

for any X,Y € TM, where I denotes the identity transformation on
TM.

Let X A'Y denote the operator of TM given by Z — (Y,Z2)X —
(X,2Z)Y. Then, the curvature tensor R of M is given by the equation
of Gauss of M

RX,)Y)Z =c{(XANY)Z + (X NpY)Z — 2{(pX,Y)pZ}
+AX A AY)Z,

for any X,Y,Z € TM. The Codazzi equation of M is
(24) (VxAY — (Vv A)X = c{n(X)pY —n(Y)pX — 2(pX,Y)E},
for any XY € TM.

(2.3)
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The operators R(X,Y) and X AY are extended to act on A as deriva-
tions as follows,

(25) (R(X,Y)-4)Z = ((VxVy —-VyVx—Vixy)A)Z
= [R(X,Y), A]Z,

(2.6) (XAY - A)Z=[XAY,A]Z,

where [,] denotes the bracket of operators.
Using the equation of Gauss (2.3), condition (1.1) may be written in
the form: _

(c— PAY, 2)X — (c— fY(AX,Z)Y

+c(ApY, ZYpX — c{ApX, Z)pY — 2c(pX,Y)pAZ
+((A%Y,Z) - (e = f)Y, Z))AX

+((e— X, 2) - (A*X, Z))AY

—c(@Y, Z)ApX + c{pX, Z)ApY + 2¢{pX,Y)ApZ
—(AY, Z)A2X + (AX,Z)A%Y =0

forany X,Y,Z € TM.

We need to recall the following results in order to prove our theorem.
T. E Cecil and P. J. Ryan in [6] and S. Montiel in [15] classified the real
hypersurfaces in complex space forms with at most two distinct principal
curvatures at each point. They needed the hypothesis n > 3 to prove
that the vector field £ is principal. If we assume that £ is principal, from
the above papers, we can obtain the following result.

(2.7)

PROPOSITION 2.1. Let M be a connected orientable real hypersurface
in M™(c), n > 2, ¢ = £1. Given a normal unit vector field N on M,
suppose that there exist two smooth functions a and b defined on M
such that the Weingarten endomorphism A associated with N takes the
form AX = aX +b(X,&)€, for any X € TM. Then, M is an open subset
of one of the following real hypersurfaces:
1. in CP™,
A1)t a tube of radius 0 < r < w/2 over a totally geodesic hyper-
plane CP™"L;
2. in CH™,
Ap): a horosphere;
A1): a tube of radius r > 0 over a totally geodesic CH*, where
k=0,n—1.

Usually, tubes over a totally geodesic M k(c), with k € {1,...,n—2},
are called real hypersurfaces of type As. A description of the horosphere
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Ap can be found in [16]. Real hypersurfaces of type Ag, Ay and Ay are
simply known as real hypersurfaces of type A.

LEMMA A. [19] Let M be a real hypersurface of M™(c), n > 2,
¢ = £1. Suppose that ¢ is principal with principal curvature p. Then
the function p is locally constant.

LEMMA B. [3] Let M be a real hypersurface of M”(c), n>2c=
+1. Suppose that £ is principal with principal curvature pu. Let X be
a principal vector orthogonal to £ and with principal curvature \. If
p? +4c# 0 or p? 4+ 4c=0 and ) # p/2, then ¢X is also principal with
principal curvature p and is characterized by the equation

(2.8) (2A — 1) (2p — p) = p® + 4.

REMARK C. If y? +4c = 0 and \ = /2, then equation (2.8) holds,
but it does not give information about the value of p. On the other hand,
if 42 +4c =0 and A # /2, the equation (2.8) tells us that p = /2.

3. Proof of Theorem 1.2

First, we show that £ is principal. If we set Y = Z and insert it in
(2.7), we obtain

0= (= NAZ D)X ~ (¢~ NAX, )7
+c{ApZ, ZYp X — c{ApX, Z)pZ — 3c{pX, Z)pAZ
(3.1) +3c(pX, Z)ApZ + ((A 22 Z) — (c— f)(Z, 2))AX
H(e— )X, 2) — (A°X, 2))AZ
—(AZ, Z)A?X + (AX, Z)AZ,

for any X,Z € TM. Now, we consider {E1, ..., Fan—1} a local orthonor-
mal frame of TM. We insert Z = Ej in (3.1), and taking summation
overk=1,...,2n—1, we get

0= (c— FHtr(A)X + ctr(Ap)pX — depApX + 3cAp? X
+(tr(A4%) — (2n — 1)(c ~ f))AX — tr(A)A%X,
for any X € TM. From (2.2), it follows tr(Ap) = 0 and consequently,
the above equation becomes

0= (c— Hitr(A)X —depApX + 3c(X, &) A

(3.2) +(tr(A2) — (2n — 1)(c — f) — 3¢c)AX — tr(A)A%X,
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forany X € TM. If X and Y € TM are orthogonal, from (3.2), we
have

(3.3) 0=—4c(pApX,Y) +3c(X,{)(A4L,Y)

+ (tr(A%) — (2n — 1)(c — f) — 3c)(AX,Y) — tr(A)(A%X,Y).
Exchanging X and Y in (3.3), we obtain
(34) 0= delpApY, X) + 3e(Y, £) (A€, X)

+ (tr(4%) — (2n — 1)(c — f) — 3¢){AY, X) — tr(A)(A%Y, X).
By equation (2.2) and subtracting (3.3) to (3.4), we get (X, £)(A4£,Y) =
(Y,6)(AL, X), for any XY € TM. If we insert X = £ in the above
equation, then we have (A¢,Y) = ((4€,6)¢,Y), for any Y € TM. From
here, we conclude that £ is a _principal vector of A. This means that
M is a Hopf hypersurface in M™(c). Now, by Lemma B, we have that
= (A€, §) is locally constant.

Next, by Lemma B, given a point of M, we can choose a unit tangent

vector field U defined on a connected open neighborhood 2 of such point,

satisfying AU = AU and ApU = peU. Suppose that A # p on a open
set X C Q. If weinsert X =U,Y =¢U and Z = U in (2.7), we get

(R(U,U) - A)U = (M — A)R(U, pU)U = —(4c+ Ap) (A — p)U
= fUNQU - A)U = f(M = AU ApU(U)) = = f(X = p)pU,
and being M pseudo-parallel, it follows
(3.5) f=4c+AlponX.
Now, if we insert X =&, Y =U and Z = U in (2.7), we obtain

(R, U) - A)U = (A = A)R(E, U)U = (c+ Au)(A — p)é
= fENU - AU = fM - A)EAU)) = f(A=p)§,

and by the same argument, it follows
(3.6) 0=M\—-u)c+ip—f)onX,

Similarly, we repeat the calculations with X =&£,Y = U and Z = ¢U,
obtaining

(3.7) 0=(p—u)(c+pu—f)onZ

If p# pand X # p at a point p € X, from (3.6) and (3.7), we get
0 = (A — p)u, hence p = 0. Then from (3.6) follows f = ¢, and by
Lemma B, we obtain that Ap = ¢. But from (3.5), 4c+Ap = f = ¢, hence
4c = 0, which is a contradiction. Consequently, we obtain that at each
point of 3, either u = A or p = p is satisfied. However, given p € ¥ such
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that u(p) = A(p) # p(p), from (3.5) and (3.7), f(p) = e+ p(p)p(p) =
¢+ u(p)p(p), hence ¢ = 0, and this is again a contradiction. A similar

argument works well for the case y = p. Thus, X is the empty set, and
therefore, that A = p on Q.

If n = 2, we have a local orthonormal basis {£,X,0X} of TM,
where X is a unit tangent vector field to M. From the above reasoning,
AX = AX, ApX = XpX, and this real hypersurface M is one of the
real hypersurfaces in Proposition 2.1. By Lemmata A and B, being M
connected, i and A are constant.

If n > 3, let {{,FE1,¢E),...,En_1,9E,_1} be a local orthonormal
basis such that AE; = M E;, ApF; = \ipE;, for i =1,...,n — 1. Now,
suppose that there exist an open subset {2 of M, and ¢ # j such that
Ai # Ajon Q. If u? + 4c = 0, then A; (or A;) is different of /2 at a
point of Q. By Lema B and equation (2.8), (2X; — u}(2A; — ) = 0, hence
A\; = u/2, but this a contradiction. Therefore, y? + 4c # 0.

Next, we insert X = E;, Y = F; and Z = E; in (2.7), obtaining

(3.8) [ =c+ XX on Q.

If we insert X =&, Y = E;, Z = E; in (2.7), we obtain

(3.9) (A — p)(c+ g — f) =0 on Q.

Similarly, inserting X =¢, Y = E; and Z = E; in (2.7), we have
(3.10) (Aj —p)c+Ajp—f)=00n Q.

If o =X (or p = ;) at a point of 2, by equation (2.8), we have
u? = (20 — u)? = p? + 4c, hence ¢ = 0, but this is a contradiction.
Consequently, i # Ai, u # A; on the whole . From (3.9) and (3.10)
we obtain p = 0, therefore f = ¢, and by (3.8), 0 = \;A;. Hence, there
exists p in Q such that A;(p) = 0 = p or A\j(p) = 0 = y, which is again
a contradiction. Thus, there is a smooth function A defined on 2 such
that AX = AX for any tangent vector fields X to M and orthogonal
to &. Therefore, {2 must be one of the examples in Proposition 2.1. A
standard connectedness reasoning shows that the whole M is one the
real hypersurfaces in Proposition 2.1.

The rest of the proof consists of checking whether these real hypersur-
faces are pseudo-parallel. All of them satisfy that their Weingarten en-
domorphism takes the form AX = AX+(u—A)(X,£)¢, forany X € TM,
and for suitable real constants A and p. A straightforward computation
shows

(R(X,Y) - A)Z = (u— A)(c+ A){{Z, ) (X ANY)E + (X AY)E, Z)¢},
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and
FXANY -A)Z = flp—NUZ,HXAY)E+ (X AY)E Z)ES,

for any X,Y,Z € TM. From these equations, f = ¢+ Au. It only

remains to compute the exact value of f for each case.
Case c = +1. See [21]. p = 2cot(2r), A = cot(r), for 0 < r < w/2.

Hence, f = 14 2cot(2r) cot(r) = cot?(r).

"~ Case c = —1. See [3].

1) p = 2coth(2r), A = coth(r), for 0 < r. Then, f = —1+ 2coth(2r)
coth(r) = coth?(r) > 1.

2) u=2, A=1. Then, f=1.

3) p = 2coth(2r), A = tanh(r), for 0 < . Hence, 0 < f = tanh?(r) <
1.

This concludes the proof of Theorem 1.2. a
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