분자핵의학 기법을 이용한 다약제내성 진단

Detection of Multidrug Resistance Using Molecular Nuclear Technique

  • 이재태 (경북대학교 의과대학 핵의학교실) ;
  • 안병철 (경북대학교 의과대학 핵의학교실)
  • Lee, Jae-Tae (Department of Nuclear Medicine, School of Medicine, Kyungpook National University) ;
  • Ahn, Byeong-Cheol (Department of Nuclear Medicine, School of Medicine, Kyungpook National University)
  • 발행 : 2004.04.30

초록

다약제내성이 발현된 암세포에서 세포내의 항암제를 세포외로 배출시키는 기전을 체내에서 비침습적인 방법으로 영상화 할 수 있는 SPECT와 PET는 악성종양의 진단과 평가에 중요한 역할을 할 것으로 판단되나, 아직까지도 Pgp와 MRP의 운반능을 적절하게 평가하는 핵의학적 영상방법을 정립하는데는 극복해야할 문제점들이 많다. 지금까지의 MDR영상에 관한 연구들은 대부분이 $^{99m}Tc$-표지 방사성의약품을 이용한 연구였으나, PET의 임상 응용이 증가함에 따라 보다 특이적이고 쉽게 응용될 수 있는 PET용 방사성 추적자의 개발도 이루어져야 할 것이다. $^{99m}Tc$-MIBI의 암 세포내 일방향(unidirectional) 섭취는 음성인 세포막 전하와 세포내 소립체 기질 전하에 의하여 결정되므로, MIBI의 섭취는 다른 지용성 양전하를 띤 막전위 추적자들과 유사하게 작용한다. $^{99m}Tc$-표지 방사성의약품은 암조직의 혈류 증가나 소립체 용적이나 활성도가 증가하면 섭취가 증가할 수 있어 보다 특이적인 MDR추적제의 개발이 필요한 것이다. 최근 Lorke 등은 약제감수성 및 내성 인체대장암세포인 $HT-29^{par}$ 세포와 $HT-29^{mdrl}$ 세포를 이용한 연구에서, 두세포 모두에서 $^{18}F$-FDG의 섭취가 있었고, MDR이 발현된 세포와 종양에서 $^{18}F$-FDG 섭취가 훨씬 낮았고, MIBI는 MDR이 없는 모세포에서도 매우 낮았음을 보고한 바 있다. 이 세포는 전자현미경검사에서 사립체가 풍부하지 않은 세포였다. 그러므로 이러한 결과로 보아 $^{99m}Tc$-MIBI 영상에서 종양이 보이지 않거나 섭취가 미약하다고 해도 MDR이 발현되었다고 단정할 수는 없게 된다. 즉 MDR의 발현유무를 정확하게 감별할 수 있기 위하여는 저항이 없는 세포에 MIBI가 충분하게 섭취되어야 한다는 것이 필수적인 요건이며, 종양세포 종류에 따라서는 FDG가 MDR의 marker가 될 수 있다는 것이다. Pgp 수송체는 ATP의존성 약제배출 펌프이므로 MDR세포는 에너지가 많이 필요하여, MDR 세포는 당분해율(rate of glycolysis)이 증가되어 있고 HT-29 mdrl 종양세포에서는 포도당 이동과정의 변화로 FDG 섭취가 감소되었다. 또한 Pgp가 점차 증가됨과 함께 plasma membrane transporter인 GLUT-1 level이 감소된다. 이러한 결과는 다약제내성의 영상화가 지금까지의 예상보다 보다 복합적이고 다양하므로 보다 많은 연구가 필요할 것이라는 점을 시사한다. 최근 시도되고 있는 생체광학 영상을 이용한 다약제내성 유전자 및 Pgp 발현 연구는 아직 시작단계이나, 분자 생물학적 영상법의 발전과 함께 MRI 기술등에도 이용될 수 있으므로 향후 많은 연구가 있을 것으로 기대된다.

Although the outcome of cancer patients after cytotoxic chemotherapy is related diverse mechanisms, multidrug resistance (MDR) for chemotherapeutic drugs due to cellular P-glycoprotein (Pgp) or multidrug-resistance associated protein (MRP) is most important factor in the chemotherapy failure to cancer. A large number of pharmacologic compounds, including verapamil, quinidine, tamoxifen, cyclosporin A and quinolone derivatives have been reported to overcome MDR. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are available for the detection of Pgp and MRP-mediated transporter. $^{99m}Tc$-MIBI and other $^{99m}Tc$-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies for tumor imaging, and to visualize blockade of PgP-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with $^{11}C$ have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and $N-[^{11}C]acetyl-leukotriene$ E4 provides an opportunity to study MRP function non-invasively in vivo. SPECT and PET pharmaceuticals have successfully used to evaluate pharmacologic effects of MDR modulators. Imaging of MDR and reversal of MDR with bioluminescence in a living animal is also evaluated for future clinical trial. We have described recent advances in molecular imaging of MDR and reviewed recent publications regarding feasibility of SPECT and PET imaging to study the functionality of MDR transporters in vivo.

키워드

참고문헌

  1. Gottesman MM, Pastan I. The multidrug transporter, a double-edged sword. J Biol Chem 1988;263:12163-6.
  2. Breuninger LM, Paul S, Gaughan K, Miki T, Chan A, Aaronson SA, et al. Expression of multidrug resistance associated with increasd drug efflux and altered intracellular drug distribution. Cancer Res 1995;55:5342-7.
  3. Hollo Z, Homolya L, Hegedus T, Muller M, Szakacs G, Jakab K, et al. Parallel functional and immunological detection of human multidrug resistance proteins, P-glycoprotein and MRP1. Anticancer Res 1998;18:2981-7.
  4. Endicott JA, Ling V. The biochemistry of P-glycoprotein mediated multidrug resistance. Annu Rev Biochem 1989;58:137-7 https://doi.org/10.1146/annurev.bi.58.070189.001033
  5. Chang G. Multidrug resistance ABC transporters. FEBS letters 2003;555:102-5. https://doi.org/10.1016/S0014-5793(03)01085-8
  6. Loo TW, Bartlett MC, Clarke DM. Residues V133 and C137 in transmembrane segment 2 are close to residues A935 and G939 in transmembrane segment 11 of human P-glycoprotein. J Biol Chem 2004 (in press)
  7. Tew KD, Houghton PJ, Houghton JA. Modulation of P-glycoprotein mediated multidrug resistance, In: M. A. Hollinger (ed.), Preclinical and clinical modulation of anti-cancer drugs, pp125-197, Boca Raton, Fl: CRC Press. 1993.
  8. Benderra Z, Morjani H, Trussardi A, Manfait M. Role of the vacuolar H+-ATPase in daunorubicin distribution in etoposideresistant MCF7 cells overexpressing the multidrug-resistance associated protein. Int J Oncol 1998;12:711-5.
  9. Gottesman MM, Pastan I. Clinical trials of agents that reverse multidrug resistance. J Clin Oncol 1989;7:409-1 https://doi.org/10.1200/JCO.1989.7.4.409
  10. Boesch D, Gaveriaux C, Jachez B, Pourtier-Manzanedo A, Bollinger P, Loor F. In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res 1991;51:4226-33.
  11. Sikic BI. Pharmacologic approaches to reversing multidrug resistance. Semin Hematol 1997;34:40-7.
  12. Benson AB 3rd, Trump DL, Koeller JM, Egorin MI, Olman EA, Witte RS, et al. Phase I study of vinblastine and verapamil given by concurrent iv infusion. Cancer Treat Rep 1985;69:795-9.
  13. Lampidis TJ, Shi YF, Calderon CL, Kolonias D, Tapiero H, Savaraj N. Accumulation of simple organic cations correlates with differential cytotoxicity in multidrug-resistance and -sensitive human and rodent cells. Leukemia 1997;11:1156-9. https://doi.org/10.1038/sj.leu.2400700
  14. Choi SU, Lee BH, Kim KH, Choi EJ, Park SH, Shin HS, et al. Novel multidrug resistance modulators, KR-30026 and KR-30031, in cancer cells. Anticancer Res 1997;17:4577-92.
  15. Bissett D, Kerr DJ, Cassidy J, Meredith P, Traugott U, Kaye SB. Phase I and pharmacokinetic study of D-verapamil and doxorubicin. Br J Cancer 1991;64:1168-7 https://doi.org/10.1038/bjc.1991.484
  16. Hendrikse NH, Franssen EJF, van der Graaf WTA, Vaalburg W, de Vries EGE. Visualization of multidrug resistance in vivo. Eur J Nucl Med 1999;26:283-93. https://doi.org/10.1007/s002590050390
  17. Shilling RA, Balakrishnan L, Shahi S, Venter H, van Veen HW. A new dimer interface for an ABC transporter. Int J Antimicrob Agents 2003;22:200-4. https://doi.org/10.1016/S0924-8579(03)00212-7
  18. van Tellingen O, Buckle T, Jonker JW, van der Valk MA, Beijinen JH. P-glycoprotein and MRP1 collectively protect the bone marrow from vincreistines-induced toxicity in vivo. Br J Cancer 2003;89:1776-82. https://doi.org/10.1038/sj.bjc.6601363
  19. Carpinteiro A, Peinert S, Ostertag W, Zander AR, Hosfeld DK, Kuhlcke K, et al. Genetic protection of repopulating hematopoietic cells with an improved MDR1-retrovirus allows adminstration of intensified chemotherapy following stem cell transplantation in mice. Int J Cancer 2002;98:785-92. https://doi.org/10.1002/ijc.10206
  20. Pujol JL, Simony J, Gautier V, Marty Ane C, Pujol H, Michel FB. Immunochemical study of p-glycoprotein distribution in lung cancer. Lung Cancer 1993;10:1-12. https://doi.org/10.1016/0169-5002(93)90304-G
  21. Georges E, Bradley G, Gariepy J, Ling V. Detection of p-glycoprotein isoforms by gene-specific monoclonal antibodies. Proc Natl Acad Sci USA 1990;87:152-6. https://doi.org/10.1073/pnas.87.1.152
  22. Kessel D, Beck WT, Kukuruga D, Schulz V. Characterization of multidrug resistance by fluoroscent dyes. Cancer Res 1991;51:4665-70.
  23. Miller TP, Grogan TM, Dalton WS, Spier CM, Scheper RJ, Salmon SE. P-glycoprotein expression in malignant lymphoma and reversal of clinical drug resistance with chemotherapy plus high-dose verapamil. J Clin Oncol 1991;9:17-24. https://doi.org/10.1200/JCO.1991.9.1.17
  24. Oda Y, Schneider-Stock R, Rys J, Gruchala A, NiezabitowskinA, Roessner A. Reverse transcriptase-polymerase chain reaction amplification of MDR1 gene expression in adult soft tissue sarcomas. Diagn Mol Pathol 1996;5:98-106. https://doi.org/10.1097/00019606-199606000-00004
  25. Dyszlewski M, Blake HM, Dahlheimer JL, Pica CM, Piwnica-Worms D. Characterization of a novel 99mTc-carbonyl complex as a functional probe of MDR1 P-glycoprotein transport activity. Mol Imaging 2002;1:24-35. https://doi.org/10.1162/153535002753395680
  26. Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM. Functional imaging of multidrug-resistance p-glycoprotein with an organotechnetium complex. Cancer Res 1993;53:977-84.
  27. Piwnica-Worms D, Holman BL. Noncardiac applications of hexakis(alkylisonitrile) technetium-99m complexes 'comment' J Nucl Med 1990;31:1166-7.
  28. Rao VV, Chiu ML, Krounage JF, Piwnica-Worms D. Expression of recombinant human multidrug resistance p-glycoprotein in insect cells confers decreased accumulation of technetium-99m sestamibi. J Nucl Med 1994;35:510-5.
  29. Chun KA, Lee J, Lee SW, Kang DY, Sohn SK, Lee JK, et al. Effect of multidrug resistance gene-1(mdr1) overexpression in in vitro uptake of Tc-99m sestaMIBI in murine L1210 leukemia cells. Korean J Nucl Med 1999;33:152-62.
  30. Cordobes MD, Starzec A, Delmon-Moingeon L, Blanchot C, Kouyoumdiian J-C, Prevest G, et al. Technetium-99m-sestamibi uptake by human benign and malignant breast tumor cells: correlation with mdr gene expression. J Nucl Med 1996;37:286-9.
  31. Chiu ML, Kronauge JF, Piwnica-Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile)technetium(I) in cultured mouse fibroblasts. J Nucl Med 1990;31:1646-53.
  32. Delmon-Moingeon LI, Piwnica-Worms D, Van den Abbeele AD, Holman BL, Davison A, Jones AG. Uptake of the cation hexakis (2-methoxyisobutylisonitrile)-technetium-99m by human carcinoma cell lines in vitro. Cancer Res 1990;50:2198-202.
  33. Kostakoglu L, Kiratli P, Ruacan S, Hayran M, Emri H, Ergun EL, et al. Association of tumor washout rates and accumulation of technetium-99m-MIBI with expression of P-glycoprotein in lung cancer. J Nucl Med 1998;39:228-34.
  34. Kostakoglu L, Ruacan S, Ergun EL, Sayek I, Elahi N, Bekdik CF. Influence of the heterogeneity of P-glycoprotein on technetium-99m MIBI uptake in breast cancer. J Nucl Med 1998;39:1021-6.
  35. Del Vecchio S, Ciarmiello A, Pace L, Potena MI, Carriero MV, Mainolfi C, et al. Fractional retention of technetium-99m sestamibi as an index of P-glycoprotein expression in untreated breast cancer patients. J Nucl Med 1997;38:1348-5
  36. Bom HS, Kim YC, Song HC, Min JJ, Kim JY, Park KO. Technetium-99m uptake in small cell lung cancer. J Nucl Med 1998;39:91-4.
  37. Vergote J, Moretti JL, de Vries EG, Garnier-Suillerot A. Comparison of the kinetics of active efflux of 99mTc-MIBI in cells with P-glycoprotein mediated and multi-drug resistance protein associated multidrug resistance phenotupe. Eur J Biochem 1998; 252:140-6. https://doi.org/10.1046/j.1432-1327.1998.2520140.x
  38. Burak Z, Moretti J-L, Ersoy O, Sanli U, Kantar M, Tamgac F, et al. 99mTc-MIBI imaging as a predictor of therapy response in osteosarcoma compared with multidrug resistance-associated protein and P-glycoprotein expression. J Nucl Med 2003;44: 1394-40
  39. Yokogami K, Kawano H, Moriyama T, Uehara H, Sameshima T, Oku T, et al. Application of SPET using technetium-99m sestamibi in brain tumours and comparison with expression of the MDR-1 gene: is it possible to predict the response to chemotherapy in patients with gliomas by means of 99mTc-sestamibi SPET? Eur J Nucl Med 1998;25:401-9. https://doi.org/10.1007/s002590050238
  40. Barbarics E, Kronauge JF, Cohen D, Davison A, Jones AG, Croop JM. Characterization of P-glycoprotein transport and inhibition in vivo. Cancer Res 1998;58:276-82.
  41. Rodrigues M, Kalinowska W, Zielinski C, Sinzinger H. Verapamil decreases accumulation of 99mTc-MIBI and 99mTc-tetrofosmin in human breast cancer and soft tissue sarcoma cell lines. Nucl Med Comm 2001;22:645-50. https://doi.org/10.1097/00006231-200106000-00007
  42. Kim DH, Yoo JA, Seo MR, Bae JH, Jeong SY, Ahn BC, et al. Effect of verapamil on cellular uptake of Tc-99m MIBI and tetrofosmin on several cancer cells. Korean J Nucl Med 2004;38:85-98.
  43. Luker GD, Fracasso PM, Dobkin J, Piwnica-Worms D. Modulation of the multidrug resistance P-glycoprotein: detection with 99mTc-sestamibi in vivo. J Nucl Med 1997;38:369-72.
  44. Piwnica-Worms D, Rao VV, Kronauge JF, Croop JM. Characterization of multidrug resistance transport function with an organotechnetium cation. Biochemistry 1995;34:12210-20. https://doi.org/10.1021/bi00038a015
  45. Cayre A, Moins N, Finat-Duclos F, Maublant J, Verelle P. Comparative Tc-99m sestamibi and '3H'-daunomycin uptake in human carcinoma cells: Relation to the MDR phenotype and effects of reversing agents. J Nucl Med 1999;40:672-6.
  46. JK Kim, J Lee, BH Lee, SW Choi, SE Yoo, SW Lee, et al. Reversal of multidrug resistance with KR-30035: evaluation with biodistribution of Tc-99m MIBI in nude mice bearing human tumor xenografts. Korean J Nucl Med 2001;35:168-84.
  47. Tatsumi M, Tsuruo T, Nishimura T. Evaluation of MS-209, a novel multidrug-resistance-reversing agent, in tumour-bearing mice by technetium-99m-MIBI imaging. Eur J Nucl Med 2002;29:288-94. https://doi.org/10.1007/s00259-001-0705-1
  48. Utsunomia K, Ballinger JR, Piquette-Miller M, Rauth AM, Tang W, Su ZF, et al. Comparison of the accumulation and efflux kinetics of technetium-99m sestamibi and technetium-99m tetrofosmin in an MRP-expressing tumor cell line. Eur J Nucl Med 2000;27:1786-92. https://doi.org/10.1007/s002590000375
  49. Yoo JA, Chung SY, Seo MR, Kwak DS, Ahn BC, Lee KB, et al. Comparison of the uptakes of 99mTc-sestamibi and -tetrofosmin in cancer cell lines expressing multidrug resistance. Korean J Nucl Med 2003;37:178-89.
  50. Higashi K, Ueda Y, Ikeda R, Kodama Y, Guo J, Matsunari I, et al. P-glycoprotein expression is associated with FDG uptake and cell differentiation in patients with untreated lung cancer. Nucl Med Commun 2004;25:19-27. https://doi.org/10.1097/00006231-200401000-00004
  51. Mehta BM, Rosa E, Biedler JL, Larson SM. In vivo uptake of 14C-colchicine for identification of tumor multidrug resistance. J Nucl Med 1994;35:1179-84.
  52. Mehta BM, Levchenko A, Rosa E, Kim SW, Winnick S, Zhang JJ, et al. Evaluation of 14C-colchicine biodistribution with whole body quantitative autoradiography in colchicine-sensitive and -resistant xenografts. J Nucl Med 1996;37:312-4.
  53. Elsinga PH, Franssen EJF, Hendrikse NH, Fluks L, Weemaes AA, van der Graaf WTA, et al. Carbon-11 labeled daunorubicin and verapamil for proving P-glycoprotein in tumors with PET. J Nucl Med 1996;37;1571-5.
  54. Hendrikse NH, de Vries EGE, Fluks L, van der Graaf WTA, Vaalburg W, Franssen EJF. P-glycoprotein mediated kinetics in tumor bearing rats with 11C-daunorubicin and positron emission tomography. Proc Am Assoc Cancer Res 1998;39:488.
  55. Levchenko A, Mehta BM, Lee JB, Humm JL, Augensen F, Squire O, et al. Evaluation of 14C-colchicine for PET imaging of multiple drug resistance. J Nucl Med 2000;41:493-501.
  56. Lewis JS, Dearing JLJ, Sosabowski JK, Zweit J, Carnochan P, Kelland LR, et al. Copper bis(diphospine) complexes: radiopharmaceuticals for the detection of multi-drug resistance in tumors by PET. Eur J Nucl Med 2000;27:638-46. https://doi.org/10.1007/s002590050557
  57. Guhlman A, Krauss K, Oberdorfer F, Soiegel T, Scheuber PH, Muller J, et al. Noninvasive assessment of helatobiliary and renal elimination of cysteinyl leukotriens by positron emission tomography. Hepatology 1995;21:1568-75. https://doi.org/10.1002/hep.1840210615
  58. Pichler A, Prior JL, Piwnica-Worms D. Imaging reversal of multidrug resistance in living mice with bioluminescence: MDR1 P-glycoprotein transports coelenterazine. Proc Natl Acal Sci U S A 2004;101:1702-7. https://doi.org/10.1073/pnas.0304326101
  59. Nakamura K, Zhang Y, Liu G, Kubo A, Hnatowich DJ. Targeting multidrug resistance in tissue culture with antisense DNA directed against P-g;lycoprotein mRNA. Eur J Nucl Med Mol Imaging 2003;30:S217.
  60. Lorke DE, Kruger M, Buchert R, Bohuslavizki KH, Clausen M, Schumacer U. In vitro and in vivo tracer characteristics of an established multidrug resistant human colon cancer cell line. J Nucl Med 2001;42:646-54.