Sodium Iodide Symporter (NIS)를 이용한 분자영상

Molecular Imaging Using Sodium Iodide Symporter (NIS)

  • 조제열 (경북대학교 치과대학 구강생화학교실)
  • Cho, Je-Yoel (Department of Oral Biochemistry, Kyungpook National University School of Dentistry)
  • 발행 : 2004.04.30

초록

Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer or prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic agent when combined with radioiodide injection. Better NIS-mediated imaging and tumor treatment by radioiodide requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases.

키워드

참고문헌

  1. Yu Y, Annala AJ, Barrio JR, Yoyokuni T, Satyamurthy N, Namavari M. Quantitation of target gene expression by imaging reporter gene expression in living animals. Nat Med 2000;6:933-37 https://doi.org/10.1038/78704
  2. Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, et al. Iamging the expression of transfected genes in vivo. Cancer Res 1995;55:6126-32
  3. Gambhir SS, Herschman HR, Cherry SR, Barrio JR, Satyamurthy N, Toyokuni T, et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2000;2:118-38 https://doi.org/10.1038/sj.neo.7900083
  4. Bell JD, Taylor-Robinson SD. Assesing gene expression in vivo: magnetic resonance imaging and spectroscopy. Gene Ther 2000; 7:1259-64 https://doi.org/10.1038/sj.gt.3301218
  5. Tjuvajev JG, Joshi A, Callegari J, Lindsley L, Joshi R, Balatoni J, et al. A general approach to the non-invasive imaging of transgenes using cis-linked herpes simplex virus thymidine kinase. Neoplasia 1999;1:315-20 https://doi.org/10.1038/sj.neo.7900053
  6. Cho JY. A transporter gene( sodium iodide symporter) for dual purposes in gene therapy: imaging and therapy. Curr Gene Ther 2002;2:393-402 https://doi.org/10.2174/1566523023347599
  7. Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 2002;43:1188-20
  8. Schlumberger M, Tubiana M, De Vathaire F, Hill C, Gardet P, Travagli JP, et al. Long-term results of treatment of 283 patients with lung and bone metastases from differentiated thyroid carcinoma. J Clin Endocrinol Metab 1986;63:960-67 https://doi.org/10.1210/jcem-63-4-960
  9. Mazzaferri EL. Radioiodine and other treatments and outcomes. Werner and Ingbar's The thyroid: A fundamental and clinical text. Braverman LE, Utiger RD, Philadelphia JB.: Lippincott Co;1996. p.922-45
  10. Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature 1996;379:458-60 https://doi.org/10.1038/379458a0
  11. Smanik PA, Liu Q, Furminger TL, Ryu K, Xing S, Mazzaferri EL, et al. Cloning of the human sodium iodide symporter. Biochem Biophys Res Commun 1996;226:339-45 https://doi.org/10.1006/bbrc.1996.1358
  12. Levy O, Dai G, Riedel C, Ginter CS, Paul EM, Lebowitz AN, et al. Characterization of the thyroid Na+/I- symporter with an anti-COOH terminus antibody. Proc Natl Acad Sci USA 1997;94: 5568-73 https://doi.org/10.1073/pnas.94.11.5568
  13. Smanik PA, Ryu KY, Theil KS, Mazzaferri EL, Jhiang SM. Expression, exon-intron organization, and chromosome mapping of the human sodium iodide symporter. Endocrinology 1997;138:3555-8 https://doi.org/10.1210/en.138.8.3555
  14. Paire A, Bernier-Valentin F, Selmi-Ruby S, Rousset B. Characterization of the rat thyroid iodide transporter using anti-peptide antibodies. Relationship between its expression and activity. J Biol Chem 1997;272:18245-9
  15. Jhiang SM, Cho JY, Ryu KY, DeYoung BR, Smanik PA, McGaughy VR, et al. An immunohistochemical study of Na+/Isymporter in human thyroid tissues and salivary gland tissues. Endocrinology 1998;139:4416-9 https://doi.org/10.1210/en.139.10.4416
  16. Cho JY, Leveille R, Kao R, Rousset B, Parlow AF, Burak WEJr, et al. Hormonal regulation of radioiodide uptake activity and Na+/Isymporter expression in mammary glands. J Clin Endocrinol Metab 2000;85:2936-43 https://doi.org/10.1210/jc.85.8.2936
  17. Eskandari S, Loo DD, Dai G, Levy O, Wright EM, Carrasco N. Thyroid Na+/I- symporter. Mechanism, stoichiometry, and specificity. J Biol Chem 1997;272:27230-8
  18. Yoshida A, Sasaki N, Mori A, Taniguchi S, Mitani Y, Ueta Y, et al. Different electrophysiological character of I-, ClO4-, and SCNin the transport by Na+/I- symporter. Biochem Biophys Res Commun 1997;231:731-4 https://doi.org/10.1006/bbrc.1997.6178
  19. Petrich T, Helmeke HJ, Meyer GJ, Knapp WH, Pötter E. Establishment of radioactive and iodine uptake in cancer cell lines expressing the human sodium/iodine symporter. Eur J Nucl Med 2002;29:842-54 https://doi.org/10.1007/s00259-002-0784-7
  20. Zuckier LS, Dohan O, Li Y, Chang CJ, Carrasco N, Dadachova E. Kinetics of perrhenate uptake and comparative biodistribution of perrhenate, pertechnetate, and iodide by Nal sympoter-expressing tissues in vivo. J Nucl Med 2004;45:500-7
  21. Shen DHY, Marsee DK, Schaap J, Yang W, Cho JY, Hinkle G, et al. Effects of dose, intervention time, and radionuclide on sodium iodide symporter(NIS)-targeted radionuclide therapy. Gene Ther 2004;11:161-9 https://doi.org/10.1038/sj.gt.3302147
  22. Niu G, Gaut AW, Ponto LL, Hichwa RD, Madsen MT, Graham MM, Domann FE. Multimodality noninvasive imaging of gene transfer using the human sodium iodide symporter. J Nucl Med 2004;45:445-9
  23. Dadachova E, Bouzahzah B, Zuckier LS, Pestell RG. Rhenium-188 as an alternative to Iodine-131 for treatment of breast tumors expressing the sodium/iodide symporter(NIS). Nucl Med Biol 2002;29:13-8 https://doi.org/10.1016/S0969-8051(01)00279-7
  24. Shimura H, Haraguchi K, Miyazaki A, Endo T, Onaya T. lodide uptake and experimental 1311 therapy in transplanted undifferentiated thyroid cancer cells expressing the Na+/I- symporter gene. Endocrinology 1997;138:4493-6 https://doi.org/10.1210/en.138.10.4493
  25. Mandell RB, Mandell LZ, Link CJJr. Radioisotope concentrator gene therapy using the sodium/iodide symporter gene. Cancer Res 1999;59:661-8
  26. Spitzweg C, Zhang S, Bergert ER, Castro MR, McIver B, Heufelder AE, et al. Prostate-specific antigen(PSA) promoter-driven androgeninducible expression of sodium iodide symporter in prostate cancer cell lines. Cancer Res 1999;59:2136-41
  27. Boland A, Ricard M, Opolon P, Bidart JM, Yeh P, Filetti S, et al. Adenovirusmediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 2000;60: 3484-92
  28. Carlin S, Cunningham SH, Boyd M, McCluskey AG, Mairs RJ. Experimental targeted radioiodide therapy following transfection of the sodium iodide symporter gene: effect on clonogenicity in both two-and three-dimensional models. Cancer Gene Ther 2000;7: 1529-36 https://doi.org/10.1038/sj.cgt.7700264
  29. Nakamoto Y, Saga T, Misaki T, Kobayashi H, Sato N, Ishimori T, et al. Establishment and characterization of a breast cancer cell line expressing Na+/I-symporters for radioiodide concentrator gene therapy. J Nucl Med 2000;41:1898-904
  30. Spitzweg C, O'Connor MK, Bergert ER, Tindall DJ, Young CY, Morris JC. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res 2000;60:6526-30
  31. Haberkorn U, Henze M, Altmann A, Jiang S, Morr I, Mahmut M, et al. Transfer of the human NaI symporter gene enhances iodide uptake in hepatoma cells. J Nucl Med 2001;42:317-25
  32. Huang M, Batra RK, Kogai T, Lin YQ, Hershman JM, Lichtenstein A, et al. Ectopic expression of the thyroperoxidase gene augments radioioidide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer. Cancer Gene Ther 2001;8:612-8 https://doi.org/10.1038/sj.cgt.7700354
  33. Blasberg RG, Tjuvajev JG. Herpes simplex virus thymidine kinase as a marker/reporter gene for PET imaging of gene therapy. Q J Nucl Med 1999;43:163-69
  34. MacLaren DC, Toyokuni T, Cherry SR, Barrio JR, Phelps ME, Hershman JM, et al. PET imaging of transgene expression. Biol Psychiatry 2000;48:337-48 https://doi.org/10.1016/S0006-3223(00)00970-7
  35. Cho JY, Xing S, Liu X, Buckwalter TL, Hwa L, Sferra T, et al. Expression and activity of human Na+/I- symporter in human glioma cells by adenovirus-mediated gene delivery. Gene Ther 2000;7:740-9
  36. Cho JY, Shen DHY, Yang W, Williams B, Buckwalter TLF, La Perle KMD, et al. Non-invasive imaging and radioiodine therapy of sodium iodide symporter gene transfer in intracerebral animal model of gliomas. Gene Ther 2002;9:1139-45 https://doi.org/10.1038/sj.gt.3301787
  37. Marsee DK, Shen DHY, MacDonald LR, Vadysirisack DD, Lin X, Hinkle G, et al. Imaging of metastatic pulmonary tumors following NIS gene transfer using single photon emission computed tomography. Cancer Gene Ther 2004;11:121-7 https://doi.org/10.1038/sj.cgt.7700661
  38. Barton KN, Tyson D, Stricker H, Lew YS, Heisey G, Koul S, et al. GENIS: gene expression of sodium iodide symporter for noninvasive imaging of gene therapy vectors and quantification of gene expression in vivo. Mol Ther 2003;8:508-18 https://doi.org/10.1016/S1525-0016(03)00153-9
  39. Groot-Wassink T, Aboagye EO, Glaser M, Lemoine NR, Vassaux G. Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum Gene Ther 2002;13:1723-35 https://doi.org/10.1089/104303402760293565
  40. Groot-Wassink T, Aboagye EO, Glaser M, Lemoine NR, Vassaux G. Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum Gene Ther 2002;13:1723-35 https://doi.org/10.1089/104303402760293565
  41. Shin JH, Chung JK, Kang JH, Lee YJ, Kwang IK, Kim CW, et al. Feasibility of sodium/iodide symporter gene as a new imaging reporter gene: comparison with HSV1-tk. Eur J Nucl Med Mol Imaging 2004;31:425-32 https://doi.org/10.1007/s00259-003-1394-8
  42. Dingli D, Peng KW, Harvey ME, Greipp PR, O'Connor MK, Cattaneo R, et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004;103:1641-6 https://doi.org/10.1182/blood-2003-07-2233
  43. Gaut AW, Niu G, Krager KJ, Graham MM, Trask DK, Domann FE. Genetically targeted radiotherapy of head and neck squamous cell carcinoma using the sodium-iodide symporter(NIS). Head Neck. 2004;26:265-71
  44. Tazebay UH, Wapnir IL, Levy O, Dohan O, Zuckier LS, Zhao Q H, et al. The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat Med 2000;6:871-8 https://doi.org/10.1038/78630
  45. Upadhyay G, Singh R, Agarwal G, Mishra SK, Pal L, Pradhan PK, et al. Functional expression of sodium iodide symporter(NIS) in human breast cancer tissue. Breast Caner Res Treat 2003; 77:157-65 https://doi.org/10.1023/A:1021321409159
  46. Strum JM. Site of iodination in rat mammary gland. Anat Ec 1978;192:235-44
  47. Shah NM, Eskin BA, Krouse TB, Sparks CE. Iodoprotein formation by rat mammary glands during pregnancy and early postpartum period. P Soc Exp Biol Med 1986;181:443-9 https://doi.org/10.3181/00379727-181-42279
  48. Filetti S, Bidart JM, Arturi F, Caillou B, Russo D, Schlumberger M. Sodium/iodide symporter: a key transport system in thyroid cancer cell metabolism. Eur J Endocrinol 1999;141:443-57 https://doi.org/10.1530/eje.0.1410443
  49. Bidart JM, Mian C, Lazar V, Russo D, Filetti S, Caillou B, et al. Expression of pendrin and the Pendred syndrome(PDS) gene in human thyroid tissues. J Clin Endocrinol Metab 2000;85:2028-33 https://doi.org/10.1210/jc.85.5.2028
  50. Fugazzola L, Cerutti N, Mannavola D, Vannucchi G, Beck-Peccoz P. The role of pendrin in iodide regulation. Exp Clin Endocrinol Diabetes 2001;109:18-22 https://doi.org/10.1055/s-2001-11008
  51. Lacroix L, Mian C, Caillou B, Talbot M, Filetti S, Schlumberger M, et al. Na+/I- symporter and Pendred syndrome gene and protein expressions in human extra-thyroidal tissues. Eur J Endocrinol 2001;144:297-302 https://doi.org/10.1530/eje.0.1440297
  52. Levenson VV, Transue ED, Roninson IB. Internal ribosomal entry site-containing retroviral vectors with green fluorescent protein and drug resistance markers. Hum Gene Ther 1998;9:1233-36 https://doi.org/10.1089/hum.1998.9.8-1233
  53. Yoshida A, Taniguchi S, Hisatome I, Royaux IE, Green ED, Kohn LD, et al. Pendrin is an iodide-specific apical porter responsible for iodide efflux from thyroid cells. J Clin Endocrinol Metab 2002; 87:3356-61 https://doi.org/10.1210/jc.87.7.3356