흡연자에서 관상동맥 내피세포 의존성 심근 혈류 예비능: $H_2^{15}O\;PET$ 찬물자극 검사에 의한 평가

Evaluation of Endothelium-dependent Myocardial Perfusion Reserve in Healthy Smokers; Cold Pressor Test using $H_2^{15}O\;PET$

  • 황경훈 (가천의과대학 길병원 핵의학과) ;
  • 이동수 (서울대학교 의과대학 핵의학교실) ;
  • 이병일 (서울대학교 의과대학 핵의학교실) ;
  • 이재성 (서울대학교 의과대학 핵의학교실) ;
  • 이호영 (서울대학교 의과대학 핵의학교실) ;
  • 정준기 (서울대학교 의과대학 핵의학교실) ;
  • 이명철 (서울대학교 의과대학 핵의학교실)
  • Hwang, Kyung-Hoon (Department of Nuclear Medicine, Gachon Medical School) ;
  • Lee, Dong-Soo (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Byeong-Il (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Jae-Sung (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Ho-Young (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Chung, June-Key (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Myung-Chul (Department of Nuclear Medicine, Seoul National University College of Medicine)
  • 발행 : 2004.02.28

초록

목적: 젊은 흡연자 및 비흡연자에서 찬물자극 후 심근혈류 예비능을 $H_2^{15}O\;PET$을 이용하여 측정한 후 비교함으로써 흡연에 의한 관상동맥 내피세포의 기능저하를 평가하고자 하였다. 대상 및 방법: 젊은 흡연자 9명($23.8{\pm}1.1$세; $6.6{\pm}2.5$ pack-years) 및 비흡연자 9명($23.8{\pm}2.9$세)에 대하여 안정상태 및 찬물자극 후, 그리고 아데노신 주입 중에 $H_2^{15}O$를 순간주사하고 동적 PET영상을 획득한 뒤, NMF 방법으로 입력 방사능곡선 및 조직 방사능곡선을 처리하여 심근혈류량을 산출하였다. 결과: 흡연자군 및 비흡연자군 사이에 심박수혈압곱 및 안정시 혈류량에는 유의한 차이가 없었다. 그러나, 찬물자극 자극 후에는 심근혈류가 흡연자군에서 비흡연자군에 비하여 유의하게 낮았으며(흡연자군 심근혈류 : $1.25{\pm}0.34$ ml/g/min, 비흡연자군 심근혈류=$1.59{\pm}0.29$ ml/g/min ; p=0.019), 특히 안정시 심근혈류에 대한 찬물자극 후의 심근혈류의 비(내피세포 기능에 의한 심근혈류의 예비능)도 흡연자에서 유의하게 낮았다(흡연자군=$90{\pm}24%$, 비흡연자군=$122{\pm}28%$ ; p=0.024). 한편, 아데노신 주입시의 심근혈류는 두군 간에 유의한 차이가 관찰되지 않았다(흡연자군 심근혈류=$5.81{\pm}1.99$ ml/g/min, 비흡연자군 심근혈류=$5.11{\pm}1.31$ ml/g/min ; p=NS). 결론: 젊은 흡연자에서 찬물자극 후에 $H_2^{15}O\;PET$을 이용하여 측정하여 산출한 심근혈류의 예비능이 젊은 비흡연자에 비하여 감소되어 있어서 흡연에 의한 관상동맥 내피세포의 기능장애를 확인할 수 있었다.

Purpose: Much evidence suggests long-term cigarette smoking alters coronary vascular endothelial response. On this study, we applied nonnegative matrix factorization (NMF), an unsupervised learning algorithm, to CO-less $H_2^{15}O-PET$ to investigate coronary endothelial dysfunction caused by smoking noninvasively. Materials and methods: This study enrolled eighteen young male volunteers consisting of 9 smokers $(23.8{\pm}1.1\;yr;\;6.5{\pm}2.5$ pack-years) and 9 nonsmokers $(23.8{\pm}2.9 yr)$. They do not have any cardiovascular risk factor or disease history. Myocardial $H_2^{15}O-PET$ was performed at rest, during cold ($5^{\circ}C$) pressor stimulation and during adenosine infusion. Left ventricular blood pool and myocardium were segmented on dynamic PET data by NMF method. Myocardial blood flow (MBF) was calculated from input and tissue functions by a single compartmental model with correction of partial volume and spillover effects. Results: There were no significant difference in resting MBF between the two groups (Smokers: 1.43 0.41 ml/g/min and non-smokers: $1.37{\pm}0.41$ ml/g/min p=NS). during cold pressor stimulation, MBF in smokers was significantly lower than 4hat in non-smokers ($1.25{\pm}0.34$ ml/g/min vs $1.59{\pm}0.29$ ml/gmin; p=0.019). The difference in the ratio of cold pressor MBF to resting MBF between the two groups was also significant (p=0.024; $90{\pm}24%$ in smokers and $122{\pm}28%$ in non-smokers.). During adenosine infusion, however, hyperemic MBF did not differ significantly between smokers and non-smokers ($5.81{\pm}1.99$ ml/g/min vs $5.11{\pm}1.31$ ml/g/min ; p=NS). Conclusion: in smokers, MBF during cold pressor stimulation was significantly lower compared wi4h nonsmokers, reflecting smoking-Induced endothelial dysfunction. However, there was no significant difference in MBF during adenosine-induced hyperemia between the two groups.

키워드

참고문헌

  1. Lerman A, Burnett JC Jr. Intact and altered endothelium in regulation of vasomotion. Circulation 1992;86(suppl 3):III-12-III-19
  2. Egashira K, Inou T, Yamada A, Hirooka Y, Marouka Y, Takeshita A. Impaired coronary blood flow response to acetylcholine in patients with coronary risk factors and proximal atherosclerotic lesions. J Clin Invest 1993;91:31-7
  3. Vita JA, Traesure CB, Nable EG, Mclenachan JM, Fish RD, Yeung AC, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 1990;81:491-7 https://doi.org/10.1161/01.CIR.81.2.491
  4. Reddy KG, Nair RN, Sheehan HM, Hodgson JM. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol 1994;23:833-43 https://doi.org/10.1016/0735-1097(94)90627-0
  5. Egashira K, Inou T, Hirooka Y, Kai H, Sugimachi M, Suzuki S, et al. Effects of age on endothelium -dependent vasodilation of resistance coronary artery by acetylcholine in humans. Circulation 1993;88:77-81 https://doi.org/10.1161/01.CIR.88.1.77
  6. Treasure CB, Klein L, Vita JA, Manoukian SV, Renwick GH, Selwyn AP, et al. Hypertension and left ventricular hypertrophy are associated with impaired endothelium-mediated relaxation in human coronary resistance vessels. Circulation 1993;87:86-93 https://doi.org/10.1161/01.CIR.87.1.86
  7. Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP. Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation 1988;77:43-52 https://doi.org/10.1161/01.CIR.77.1.43
  8. Zeiher A, Drexler H, Wollschlaeger H, Saurbier B, Just H. Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol 1989;14:1181-90 https://doi.org/10.1016/0735-1097(89)90414-2
  9. Zeiher A, Drexler H, Wollschlaeger H, Just H. Endothelial dysfunction of the coronary microvasculature is associated with impaired coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991;84:1984-92 https://doi.org/10.1161/01.CIR.84.5.1984
  10. Meeder JG, Peels HO, Blanksma PK, Tan ES, Pruim J, van der Wall EE, et al. Comparison between positron emission tomography myocardial perfusion imaging and intracoronary Doppler flow velocity measurements at rest and during cold pressor testing in angiographically normal coronary arteries in patients with one-vessel coronary artery disease. Am J Cardiol 1996;78:526-31 https://doi.org/10.1016/S0002-9149(96)00357-8
  11. Meeder JG, Blanksma PK, van der Wall EE, Anthonio RL, Willemsen ATM Pruim J, et al. Long term cigarette smoking is associated with increased myocardial perfusion heterogeneity assessed by positron emission tomography. Eur J Nucl Med 1996;23:1442-7 https://doi.org/10.1007/BF01254465
  12. Campisi R, Czernin J, Schoder H, Sayer JW, Marengo FD, Phelps ME , et al. Effects of long-term smoking on myocardial blood flow, coronary vasomotion, and vasodilator capacity. Circulation 1998;98:119-25 https://doi.org/10.1161/01.CIR.98.2.119
  13. Di Carli MF, Bianco-Batlles D, Landa ME, Kazmers A, Groehn H, Muzik O, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999;100:813-9 https://doi.org/10.1161/01.CIR.100.8.813
  14. Drzezga AE, Blasini R, Ziegler SI, Bengel FM, Picker W, Schwaiger M. Coronary microvascular reactivity to sympathetic stimulation in patients with idiopathic dilated cardiomyopathy. J Nucl Med 2000;41:837-44
  15. Paatero P, Tapper U. Least squares formulation of robust non-negative factor analysis. Chemometr Intell Lab 1997;37:23-35 https://doi.org/10.1016/S0169-7439(96)00044-5
  16. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature 1999;401:788-91 https://doi.org/10.1038/44565
  17. Lee JS, Lee DD, Choi S, Park KS, Lee DS. Non-negative matrix factorization of dynamic images in nuclear medicine. IEEE Nuclear Science Symposium Conference Record 2001:2027-30
  18. Nitenberg A, Antony I, Foult JM. Acetylcholine-induced coronary vasoconstriction in young, heavy smokers with normal coronary arteriographic findings. Am J Med 1993;95:71-7 https://doi.org/10.1016/0002-9343(93)90234-G
  19. Zeiher AM, Schachinger V, Minners J. Long-term cigarette smoking impairs endothelium-dependent coronary arterial vasodilator function. Circulation 1995;92:1094-1100 https://doi.org/10.1161/01.CIR.92.5.1094
  20. Jorge PA, Ozaki MR, Almeida EA. Endothelial dysfunction in coronary vessels and thoracic aorta of rats exposed to cigarette smoke. Clin Exp Pharmacol Physiol 1995;22:410-3 https://doi.org/10.1111/j.1440-1681.1995.tb02031.x
  21. Pepine CJ, Schlaifer JD, Mancini GB, Pitt B, O'Neill BJ, Haber HE. Influence of smoking status on progression of endothelial dysfunction. TREND Investigators. Trial on Reversing Endothelial Dysfunction. Clin Cardiol 1998;21:331-4
  22. Iwado Y, Yoshinaga K, Furuyama H, Ito Y, Noriyasu K, Katoh C, et al. Decreased endothelium-dependent coronary vasomotion in healthy yong smokers. Eur J Nucl Med 2002;29:984-90 https://doi.org/10.1007/s00259-002-0818-1
  23. Barua RS, Ambrose JA, Srivastava S, DeVoe MC, Eales-Reynolds LJ. Reactive oxygen species are involved in smoking-induced dysfunction of nitric oxide biosynthesis and upregulation of endothelial nitric oxide synthase: an in vitro demonstration in human coronary artery endothelial cells. Circulation 2003;107:2342-7 https://doi.org/10.1161/01.CIR.0000066691.52789.BE
  24. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 2000;101:948-54 https://doi.org/10.1161/01.CIR.101.9.948
  25. Halcox JPJ, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation 2002;106:653-8 https://doi.org/10.1161/01.CIR.0000025404.78001.D8
  26. Gokce N, Keaney JF, Hunter LM, Watkins MT, Menzoian JO, Vita JA. Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: a prospective study. Circulation 2002;105:1567-72 https://doi.org/10.1161/01.CIR.0000012543.55874.47
  27. Quyyumi AA. Prognostic value of endothelial function. Am J Cardiol 2003;91:19H-24H https://doi.org/10.1016/S0002-9149(03)00430-2
  28. Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med 2000;342:454-60 https://doi.org/10.1056/NEJM200002173420702
  29. Campisi R, Czernin J, Schoder H, Sayre JW, Schelbert HR. L-Arginine normalizes coronary vasomotion in long-term smokers. Circulation 1999;99:491-7 https://doi.org/10.1161/01.CIR.99.4.491
  30. Lerman A, Burnett JC Jr, Higano ST, Mckinley LJ, Holmes DR Jr. Long-term L-arginine supplementation improves small-vessel coronary endothelial function in humans. Circulation 1998;97:2123-8 https://doi.org/10.1161/01.CIR.97.21.2123
  31. Ting HH, Timimi FK, Haley EA, Roddy MA, Ganz P, Creager MA.Vitamin C improves endotheliumdependent vasodilation in forearm resistance vessels of humans with hypercholesterolemia. Circulation 1997;95:2617-22 https://doi.org/10.1161/01.CIR.95.12.2617
  32. Carr A, Frei B. The role of natural antioxidants in preserving the biological activity of endothelium-derived nitric oxide. Free Radic Biol Med 2000;28:1806-14 https://doi.org/10.1016/S0891-5849(00)00225-2