GENERALIZING THE REFINED PICKANDS ESTIMATOR OF THE EXTREME VALUE INDEX

  • Yun, Seok-Hoon (Department of Applied Statistics, University of Suwon)
  • Published : 2004.09.01

Abstract

In this paper we generalize and improve the refined Pickands estimator of Drees (1995) for the extreme value index. The finite-sample performance of the refined Pickands estimator is not good particularly when the sample size n is small. For each fixed k = 1,2,..., a new estimator is defined by a convex combination of k different generalized Pickands estimators and its asymptotic normality is established. Optimal weights defining the estimator are also determined to minimize the asymptotic variance of the estimator. Finally, letting k depend upon n, we see that the resulting estimator has a better finite-sample behavior as well as a better asymptotic efficiency than the refined Pickands estimator.

Keywords

References

  1. BLOOMFIELD, P. J., ROYLE, J. A., STEINBER, L. J. AND YANG, Q. (1996). 'Accounting for meteorological effects in measuring urban ozone levels and trends', Atmospheric Environment, 30, 3067-3077 https://doi.org/10.1016/1352-2310(95)00347-9
  2. DE HAAN, L. (1984). 'Slow variation and characterization of domains of attraction', In Statistical Extremes and Applications (J. Tiago de Oliveira, ed.), 31-48, Reidel, Dordrecht
  3. DE HAAN, L. AND STADTMULLER, U. (1996). 'Generalized regular variation of second order', Journal of the Australian Mathematical Society, A61, 381-395
  4. DEKKERS, A. L. M. AND DE HAAN, L. (1989). 'On the estimation of the extreme-value index and large quantile estimation', The Annals of Statistics, 17, 1795-1832 https://doi.org/10.1214/aos/1176347396
  5. DEKKERS, A. L. M., EINMAHL, J. H. J. AND DE HAAN, L. (1989). 'A moment estimator for the index of an extreme-value distribution', The Annals of Statistics, 17, 1833-1855 https://doi.org/10.1214/aos/1176347397
  6. DREES, H. (1995). 'Refined Pickands estimators of the extreme value index', The Annals of Statistics, 23, 2059-2080 https://doi.org/10.1214/aos/1034713647
  7. FALK, M. (1994). 'Efficiency of convex combinations of Pickands estimator of the extreme value index', Journal of Nonparametric Statistics, 4, 133-147
  8. HILL, B. M. (1975). 'A simple general approach to inference about the tail of a distribution', The Annals of Statistics, 3, 1163-1174 https://doi.org/10.1214/aos/1176343247
  9. PEREIRA, T. T. (1994). 'Second order behavior of domains of attraction and the bias of generalized Pickands' estimator', In Extreme Value Theory and Applications Ⅲ (J. Galambos, J. Lechner and E. Simiu, eds.), 165-177, NIST
  10. PICKANDS, J. (1975). 'Statistical inference using extreme order statistics', The Annals of Statistics, 3, 119-131 https://doi.org/10.1214/aos/1176343003
  11. SMITH, R. L. (1987). ;'Estimating tails of probability distributions', The Annals of Statistics, 15, 1174-1207 https://doi.org/10.1214/aos/1176350499
  12. YUN, S. (2002a). 'On a generalized Pickands estimator of the extreme value index', Journal of Statistical Planning and Inference, 102, 389-409 https://doi.org/10.1016/S0378-3758(01)00100-8
  13. YUN, S. (2002b). 'Minimax choice and convex combinations of generalized Pickands estimator of the extreme value index', Journal of the Korean Statistical Society, 31, 315-328