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A TRIAL SOLUTION APPROACH TO THE GI/M/1
QUEUE WITH N-POLICY AND EXPONENTIAL
VACATIONS!

KyunGg CHUL CHAE!, SANG MIN LEE!, NaM K1 Kim?,
JiN DonG KiM3 aAND Ho Woo LEE*

ABSTRACT

We present a trial solution approach to GI/M/1 queues with generalized
vacations. Specific types of generalized vacations we consider are N-policy
and a combination of N-policy and exponential multiple vacations. Discus-
sions about how to find trial solutions are given.
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1. INTRODUCTION

The subject of M/G/1 queues with generalized vacations has been studied
extensively in the literature by a number of researchers. (For a survey see Doshi,
1986.) Even books are written on this subject (Takagi, 1991 and 1993). On
the contrary, the subject of GI/M/1 queues with generalized vacations has been
studied by quite fewer researchers.

Karaesmen and Gupta (1996) stated in their paper that GI/M/1 queues
with generalized vacations are “considerably more difficult” to analyze than cor-
responding M/G/1 queues. The main objective of this paper is to present a
simple method for analyzing GI/M/1 queues with generalized vacations.
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Our method is a trial solution method similar to what Ross (1997) used for
the GI/M/1 queue and what Gross and Harris (1985) used for the GI/M/c
queue. Once trial solutions of proper forms are found for balance equations of
arrival-epoch embedded Markov chains (AEMCs), the rest are straightforward.
Thus the issue is how to find (or guess) proper trial solutions. In this paper, we
find trial solutions by an approach based on the regenerative processes.

The list of specific types of generalized vacations is long. It includes multiple
vacations, single vacation, setup time, N-policy, D-policy, etc. M/G/1 queues
with each of these types, and some combinations of these, are well investigated.
Under the GI/M/1 setting, however, only some of these types are investigated
so far.

An almost exclusive listing is as follows. The GI/M/1 queue with exponential
multiple vacations (EMV) is investigated by three teams of researchers at about
the same time (Chatterjee and Mukherjee, 1990; Choi and Park, 1991; Tian et
al., 1989). Three extensions of this GI/M/1 queue with EMV are the finite
capacity version (Karaesmen and Gupta, 1996), a batch service version (Choi
and Han, 1994), and the discrete-time version (Tian and Zhang, 2002). Analyses
of the GI/M/1 queue with exponential single vacation, and a variant of it, can
be found in Choi and Park (1991) and Daniel and Krishnamoorthy (1986). And
only recently the N-policy GI/M/1/K queue (Ke and Wang, 2002), the N-policy
GI/M/1 queue (Zhang and Tian, 2004) and the N-policy GI/M/1/K queue with
EMV (Ke, 2003) are investigated, where K stands for the finite capacity.

It should be noted that the N-policy GI/M/1 queue (Zhang and Tian, 2004)
is a special case of the N-policy GI/M/1/K queue (Ke and Wang, 2002) such that
K = co. However, the ten-step algorithm presented by Ke and Wang (2002) is
intended for the finite capacity K. Likewise, the fifteen-step algorithm presented
by Ke (2003) for the N-policy GI/M/1/K queue with EMV is intended for the
finite capacity K.

We analyze the N-policy GI/M/1 queue with EMV by using the trial solution
approach in Section 4. In Section 3, we demonstrate that the result of Zhang and
Tian (2004) could have been obtained easily by using the trial solution approach.
In Section 2, we introduce the trial solution approach.

2. PRELIMINARIES AND ANALYSIS OF THE GI/M/1 QUEUE

In this section, we define queueing systems and the notation that will be used
in this paper. Also, we examine the method of Ross (1997) and introduce the
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trial solution approach.

2.1. The N-policy GI/M/1 queue

Customers’ interarrival times A, are iid (independent and identically dis-
tributed) random variables having general distribution A(t) with a mean A7!.
Customers are served one at a time by a single server. The service times S,, are
#id exponential with a mean p~!. 4, and S, are mutually independent.

An N-policy operates as follows. The server is turned off each time the system
empties. When the queue length reaches a predetermined constant N, the server
is turned on and begins to serve the customers exhaustively.

2.2. The N-policy GI/M/1 queue with EMV

As soon as the system empties, the sever has a vacation of random length.
When a vacation is over, if the queue length is below N the server has another va-
cation; otherwise he returns from the vacation and begins to serve the customers
exhaustively. The vacation times V,, are iid exponential with a mean v~1. V,,
Ap, Sp are mutually independent.

2.3. Notation

P : matrix of state transition probabilities of an AEMC,

Tno : steady-state probabilities of an AEMC that an arriving customer finds the
server idling (either turned off or on vacation) and sees n customers in the
queue, n =90,1,2,A,

mn1 : steady-state probabilities of an AEMC that an arriving customer finds the
server busy and sees n customers in the system, n = 1,2, 3, A,

Pno (Pn1) : long-run proportions of time during which the server is idling (busy) and
there are n customers in the system, n =0,1,2,A (n =1,2,3,A),

00 k
b :/0 (;:t') exp(—put) }dA(t), k=0,1,2,A,

A*(0) = /0 exp(—0t)dA(t) : LST (Laplace-Stieltjes transform) of A,,.
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2.4. AEMC based analysis of the GI/M/1 queue

We consider the AEMC of the standard GI/M/1 queue where A < p. Let IT
denote the vector (mgp, 7111, w21, w31, A), then II is the unique solution of

I = 1P, (2.1)

o0
1 = moo + Zﬂnl, (2.2)
n=1

where P, with deleted first column, is

bo
b bo
2.
by b1 bo (23)
MMMO
The trial solution used by Ross (1997) is of the form
Tl = Moo T, n > 1. (2.4)

The conditions that the trial solution (2.4) should satisfy are obtained by sub-
stituting it into (2.1) and (2.2). Since one of the so-called balance equations
belonging to (2.1) is redundant, we choose to ignore the first equation which
corresponds to the deleted first column of P.

Substituting (2.4) into the rest of the balance equations, we have

oo

™00 = Z oo ’r‘i bi—n-i-la n 2 1. (25)

t=n—1
Throughout the paper we will ignore trivial cases. The only non-trivial root of
(2.5) is
w .
r=Zbir’=A*(u—-ur), 0<r<l (2.6)
i=0
Finally, we have mgo = 1 — r from (2.2).

2.5. A regenerative process approach to the GI/M/1 queue

Let 72, n = 0,1,2,A, denote the long-run proportions of customers who
leave behind n customers in the system when they depart. Note that 7,9, n =
0,1,2,A (mp1, n=1,2,3,A) can also be interpreted as the long-run proportions
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of customers who find the server idling (busy) and see n customers in the system
when they arrive.
For the GI/M/1 queue, it is well known that (see Wolff, 1989, p. 387)

02 = 700, (2.7.a)

Tng = Tp1, N> 1. (2.7.b)

Another well known relation based on PASTA (Wolff, 1982) property is that (see
Wolff, 1989, p.397)
HPnt = )\7rn_1’2, n Z 1. (2.8)

Our approach based on the regenerative process is as follows. Let R, and
R} (6) respectively denote the remaining interarrival time and its LST at an
instant a customer departs the system leaving behind n customers, n = 0,1,2, A.
Then, based on the standard renewal reward arguments, we claim that

Poo = X2 w2 E(Ry), (2.9.a)

P11 = A2 T2 E[min(R;, S)] + A mg E[min(4, S)], (2.9.b)

Pn1 = A2 T2 E(min(Ry,, S)] + Amp_11 E[min(4, S)], n>2, (2.9.¢)
where

Az = . (2.10)

We interpret (2.9) as follows. (Readers interested in a rigorous approach
are referred to Theorem 3.1 of El-Taha and Stidham Jr., 1999.) A; (}) is the
expected number of departing (arriving) customers per unit time. Thus Aompa
is the expected number of departing customers who leave behind n customers
per unit time, n > 0. Likewise, Amgg (Amp1,n > 1) is the expected number of
arriving customers who find the server idling (busy) and see 0 (n) customers
per unit time. Furthermore, each time a customer departs the system leaving
behind 0 customers, the expected time duration until the next arrival is E(Rp).
On the other hand, each time a customer departs the system leaving behind n
customers, n > 1, the expected time duration until either the next arrival or the
next departure (whichever occurs first) is E[min(R,,S)]. Similarly, each time
a customer arrives at the system seeing n customers, n > 0, the expected time
duration until either the next arrival or the next departure (whichever occurs
first) is E[min(A4, S)], due to the memoryless property of the exponential service
time. E[min(R,,S)] and E[min(4, S)] are as follows (see Appendix).

E[min(R,,S)] = {1 - Ri()}g™t, n>1, (2.11.a)
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E[min(4, 5)] = (1 - bo)u~ L. (2.11.b)

Substituting (2.7), (2.8), (2.10), (2.11) into (2.9.b) and (2.9.c) and solving for
1, we have

n bO
= e > . -
Tnl ) ZI::I1 {1 — R:(/la)}’ n -~ 1 (2 12)

Comparing (2.12) with (2.4), we obtain following relations.

Ri(p) = Ri(p), n=2, (2.13)
_ bo
"T O RGY 219

3. THE N-PoLicy GI/M/1 QUEUE

In this section, we solve balance equations of AEMC using a trial solution.
Then we explain how the trial solution is found by the approach introduced in
Section 2.5.

3.1. Solving I1 = IIP

Let IT denote the vector (mog, 710, 720, A, TN—1,0, 711, 721, 731, A). As we did in
Section 2, we delete the first column of P of the N-policy GI/M/1 queue. Then
we can express the rest of P in terms of submatrices as

; 3.1)

where I is an identity matrix of size N — 1, whose columns correspond to states
{(n,0), 1 <n <N —1}; 01,02, 03 are matrices with all entries zero; P; is the
same as (2.3) except that corresponding column states are now {(n,1), n > N+1}
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and corresponding row states are {(n,1), n > N}; and

11 21 31 A N-1,1N,1
N-~-1 bnv-1 bn_—2 by-3 A b1 bg \

11 by bo
21 by by bo
Pi= u M M M o) , (32
N-1,1 I by-y by—o by_3 A b, by
N,1 by by-1 by-2 A bo b
M \M M M M M)
II is the unique solution of
II = IIP, (3.3)
N-1 o]
1= z Tno + Z Tnl- (3.4)
n=0 n=1

As we did in Section 2, we ignore the first equation of (3.3) which corre-
sponds to the deleted first column of P. Solving the next N — 1 equations, which
correspond to I in (3.1), we obtain

TN-1,0 = TN—2,0 = A = w19 = mo- (3.5)

The rest of the balance equations are as follows.

( [os)
TN-10bN-1 + Z mi1bi, n=1, (3.6.a)
1,=01o
1 = { TN-100N-n+ Y Tiabint1, 2<n<N, (3.6.b)
i=n-1
(o ¢]
Z Wilbi—n+l, n _>_ N + 1. (37)
{i=n—1

Note that (3.6) and (3.7) correspond to P, and P in (3.1), respectively.
The trial solution we use is of the form

= 7wn1r™ N, n>N. (3.8)

Substituting (3.8) into (3.7) and dividing both sides by 717" ~", we obtain (2.6).
That is, r in (3.8) should satisfy the equation (2.6).
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Next, 7n1, 1 < n < N, must be determined by (3.6). We substitute (3.8) into
(3.6.b), one at a time, in the reversed order of n = N, N —1, A, 3,2. Substituting
(3.5) and (3.8) into the case n = N of (3.6.b), we have

e}

N1 = moobo + Tn—1,1b0 + 7rN17‘"1 Z bi’r‘i. (3.9)

=1
From (2.6) we have “S 50, b;r* =7 — by”. Thus from (3.9), we obtain
TN-1,1 = TN1r L — moo. (3.10)

The rest of mp1, 1 < n < N — 2, are obtained in a recursive fashion from the
cases 2 < n < N — 1 of (3.6.b). For example, substituting (3.10) together with
(3.8), (3.5), (2.6) into the case n = N — 1 of (3.6.b) and solving for my_31, we
have

TN_21 = TN1T 2 — moC2, (3.11)
where
Cy = by (3.12)
For convenience, let us define C), as follows:
n—1
boCp = Cny — Y _ Cibpi, n>3. (3.13)
=2

Then, from the cases n = N — 2, N — 3,A,3,2 of (3.6.b), we obtain

N1 = 7TN17‘n_N — w0CN-n, 1<n<N-3. (3.14)

Note that (3.14) is valid for 1 < n < N —1 since (3.11) and (3.10) are also of the

same form if we let C} be 1.
Finally, substituting (3.14), (3.8), (3.5), (2.6) into (3.6.a), we obtain “my; =
7ooCnTY ?. Thus, putting all these together, we have

Cnyr™ —Cn— 1<n<N-1,
ﬂ_nl___{ﬂ-OO( NT N n), =N (315)

mooCnT™, n >N,

where 7o, obtained by substituting (3.5) and (3.15) into (3.4), is as follows:

N-1 B
moo = (1= r){(L =)V = 3 Ca) + Cr } g (3.16)
n=1

It can be confirmed that (3.15) coincide with the result of Zhang and Tian
(2004). (Details are omitted due to space consideration.)
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3.2. A regenerative process approach to the N-policy GI/M/1 queue

For the N-policy GI/M/1 queue where N > 2, (2.7.a), (2.8), (2.10), (2.11)
are still valid but (2.7.b) should be modified as

Mo +Tn1, 1<n<N-1, (3.17.a)
MTpo2 =
S P n> N. (3.17.b)

(2.9) is extended from the case N =1 to the case N > 2 as follows. (2.9.a) is
still valid but now we additionally have

Pno — )\Wn_l,oE(A) = Tn—1,0, 1 S n S N -1. (3.18)
Furthermore, instead of (2.9.b) and (2.9.c), we now have

P11 = Agmi2E[min(Ry, )], (3.19.a)

DPn1 = doToEmin(R,, S)] + Ar,_1,1Emin(4,S)], 2<n<N-1, (3.19.b)
PNn1 = demn2E[min(Ry, S)] + Ann—1,0E[min(A4, S)]

+Ann_1,1 E[min(4, S)], (3.19.c)

Pn1 = Ao E[min(Ry,, S)] + Amp—1,1E[min(4,S)], n>N+1. (3.19.d)

Interpretation of (3.19) is omitted since it is (almost) the same as that of (2.9).

Substituting (2.8), (2.10), (2.11), (3.17.b) into (3.19.d) and solving for m,;, we
have
Tni = TN1 H ———, n>N+1. (3.20)
i=N+1 (1- R ()} R H}

Since (3.20) resembles (2.12), there may exist N-policy counterparts of (2.13)
and (2.14). The trial solution, (3.8), is based on the following conjectures.

Ry(u) = Ry(p), n2N+1, (3.21)
_ bo
" TR 22

which include (2.13) and (2.14) as a special case that N = 1. Substituting (3.21)
and (3.22) into (3.20), we have (3.8). Note that (3.8) resembles the solution used
by Gross and Harris (1985) for the GI/M /c queue if N in (3.8) is replaced by c.
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4. THE N-Poricy GI/M/1 QUEUE WITH EMV

As a further demonstration that our trial solution method is simple and
straightforward, the GI/M/1 queue with both N-policy and EMV is analyzed in
this section. Note that the case N = 1 corresponds to the GI/M/1 queue with
EMYV investigated by Chatterjee and Mukherjee (1990), Choi and Park (1991),
and Tian et al. (1989).

4.1. P for the N-policy GI/M/1 queue with EMV

Tian et al. (1989) define v,,, n > 0, and B as follows.

Vn_/ / ut—uac eHBT L VIdrd A(f), m >0, (4.1)

Z VA (v { Z bA' W) - 4} (4.2)

Note that A*(v) in (4.2) is the probablhty that an exponential vacation (with a
mean v~ 1) does not end during an interarrival time. vy, on the other hand, is the
joint probability of two events. The first event is that a vacation ends sometime
during an interarrival time and the second is that n customers are served during
the remaining interarrival time. Substituting (4.1) into (4.2) and carrying out
integrations, Tian et al. (1989) show that
B = v

[v—p{l - A*(W)}]

As before, we delete the first column of P. Then the rest can be expressed in
terms of submatrices as

I O3 O

0,P, Py |,

O; O, P;3
where I is an identity matrix of size N — 1 whose columns correspond to states
{(n,0),1 < n < N —1}; O; through O3 are matrices with all entries zero; P;
is a diagonal matrix whose diagonal entries are all A*(v) and whose columns
correspond to states {(n,0),n > N}; and P2 and Pj3 are as follows:

11 21 ANIN+1L1 N+21A
N — 1,0 UN-1 VUN-2 A 1 41]
P= N0 v vy Ay oy
N +1,0 VN4+1 VN A 151 120
M M M M M M O
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11 21 31 41 A
11 b1 by
P3= 11 | b b b (4.3)
31 by by by by '
M \M MMM O

4.2. Solving I1 = IIP

Let IT denote the vector (mgo, 710, 720, A, T11, 721, 731, A). Then solving the
balance equations corresponding to I and Py, we have

00, 1 S n S N - 1, (443,)
Tno =
" mooA* ()Nt n>N.

The rest of the equations, corresponding to Py and P3, are as follows:

[o ] o0
mi= Y movi+ » mubj, (4.5)
i=N-1 j=1
o) [o o]
> Miovicnsr+ Y Tibjas, 2<n <N, (4.6)
_ }i=N-1 j=n—1
Tpn1 = oo o)
Z Ti0Vi—n+1 + Z mj1bj—n+1, NN+ 1. (4.7)
i=n—1 j=n-1

The trial solution we use is of the form
fin1 = Too{ D" N1 — ByA*(v)" N1}, n>N. (4.8)

The conditions that (4.8) should satisfy are obtained as follows. First, sub-
stituting (4.8) into (4.7) together with (2.6) and (4.2), we obtain

By = 8. (4.9)

Next, we substitute (4.8) into (4.6), together with (2.6) and (4.2), in the
reversed order of n = N, N — 1, A, 3,2. From the case n = N, we obtain

N-1,1 = "oo{ DNy — Bn}. (4.10)
Then combining (4.8) and (4.10), we have

Tt = moo{Dnr™ N1 — ByA*(v)" N1}, n>N-1. (4.11)
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Now, for convenience, we define K,,, n > 2, as follows:

Vo

n—2 ) n—1
boK, = ZV;‘A*(V)Z_”+1 + Kpo1— ZKjbn_]’, n > 3. (4.13)
i=0 j=2

Then from the cases n = N — 1, N — 2, A, 3,2, we obtain the following results in
a recursive fashion.

T = woo{ DNt Nt - ByA* ()" N 4 Ky_n}, 1<n<N-2 (414)
Finally, substituting (2.6), (4.9), (4.11), (4.14) into (4.5), we obtain
Dy =rV"YBA* ()N - Ky} (4.15)
Thus, putting all these together, we have

{BA*(W)N — Ky} — BA* (W) N + Ky _n, 1<n<N -2,
Tl (4.16.a)

mo | {BA*(V)1N — Ky} — BA*(v) N+, n>N-1,
(4.16.b)
where 7, 8, K,,, 2 <n < N, are as given in (2.6), (4.2), (4.12) and (4.13).

We make some remarks on (4.16) and (4.4). If we separate the case N = 2
when deriving (4.16), we will end up with (4.16.b) but without (4.16.a). Moreover,
(4.16.b) is valid for the case N = 1 if we let K be zero. In addition, (4.4.a) no
longer exists when N = 1. Finally, mg in (4.4) and (4.16) can be obtained
by substituting (4.4) and (4.16) into the normalization condition, Y°°° ) mno +

223__1 Tnl = 1.

4.8. A regenerative process approach to the N-policy GI/M/1 queue with EMV

For the N-policy GI/M/1 queue with EMV where N > 2, (2.7.a), (2.8),
(2.10), (2.11) are still valid but either (2.7.b) or (3.17) should be modified as

Tp2 = Tpo + Tn1, n > 1. (4.17)
Concerning ppg, (2.9.a) and (3.18) are still valid. But we additionally have
Pno = Mp_10E[min(A, V)] = Amp_10{1 — A*(@) v, n>N. (4.18)
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Note that E[min(4, V)] is of the same form as E[min(R,,S)] and E[min(4,S)]
in (2.11) (see Appendix).

Concerning pp1, (3.19.a) and (3.19.b) are still valid, but instead of (3.19.c)
and (3.19.d) we now have

Pn1 = AgMpaE[min(Ry, S)] + Amp_1,1E[min(4, S)]
+ATn_10{1 - A*(v) —w}p~!, n2>N,

where v is as defined in (4.1). Among the three terms at the right hand side of
(4.19), the first two can be interpreted the same way as before and the last will
be interpreted in Appendix.

A remark on the case N = 1 is as follows. For pgg, (2.9.a) is valid; for py,
n > 1, (4.18) is valid; for pp1, n > 2, (4.19) is valid; and for py;, (4.19) is valid if
we delete the middle term at the right hand side.

Now we make conjectures that the relations (3.21) and (3.22) hold for the N-
policy GI/M/1 queue with EMV. Then, substituting (2.8), (2.10), (2.11), (3.21),
(3.22), (4.4), (4.17) into (4.19) and solving for w1, we have

bt r * *
Fan = g Ny [ AN 0) = 0} - 4]

{rn—N+1 — A* (V)n—N+1}

(4.19)

x A0 (4.20)
= 7roo{ (1% + BN) AL BNA*(V)"_NH}, n> N,
where
By = [%—_—@ - A*(V)] {r- A*(u)}_l. (4.21)

The trial solution, (4.8), is based on (4.20). Note that Dy in (4.8) corresponds
to (my-1,1/m00) + BN.

4.4. FIFO sojourn time

FIFO sojourn time LST for the N-policy GI/M/1 queue with EMV, denoted
by W*(6), can be obtained as follows:
N-2
W*(O) _ Z ﬂ_noA*(9)N~1—nV*(9)S*(9)n+1
n=0 - (4.22)
+ D mV(O)S O + ) Am S*(O)
n=N-1 n=1
where V*(0) is the LST of V,,. Note that V*(8) = v/(6 + v).
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5. CONCLUDING REMARKS

As demonstrated with N-policy GI/M/1 queues, with and without EMV, the
trial solution method we presented in this paper is simple and straightforward
once we have a proper trial solution. Moreover, the regenerative process approach
we presented helps us not only to find a trial solution but to better understand
the underlying process.

Originally we intended to present a simple tool just for analyzing GI/M/1
queues with generalized vacations. But now we suspect that the tool could be
used for some other types of GI/M/1 queues and even for some types of GI/M /c
queues as well. Interested readers may try our method for the GI/M /c queue
with EMV and for the GI/M /c queue with phase-type multiple vacations, which
are recently investigated by Chao and Zhao (1998) and Tian and Zhang (2003),
respectively.

APPENDIX : DERIVATION OF (2.11), (4.18), (4.19)

Suppose X and Y are non-negative valued independent random variables
having general distribution X;, ¢ > 0, and exponential distribution Y (s) =1 —
e~ 7%, s > 0, respectively. Then we have

Emin(X,Y)] = /Ooo (/Ot sye "¥ds + /too t’ye"’sds) dX(t)

= /Ooo [{%(1 —e ) — te"yt} + te‘”t] dX(t)
- % /0 " ax(t) /0 " etdx )}
- %{1 — X' () (A1)

Note that E[min(R,,S)] and E[min(A4,S)] in (2.11) and E[min(4,V)] in
(4.18) are all of the same from as (A.1). Thus, we only need to show that two
random variables in each pair are independent and that one of each pair has an
exponential distribution.

In the pair (R,, S), R, is partly determined by the past service times but it is
independent of a future service time S. And this S has an exponential distribution.

In the pair (A4,S5) ((4,V)), S (V) originally implies the remaining service
(vacation) time at an epoch a customer arrives. Due to the memoryless property
of the exponential service (vacation) time, however, the remaining service (vaca-
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tion) time can be replaced by a new service (vacation) time S (V). And this S
(V) is independent of an interarrival time A.

In the last term of (4.19), Amp_1 is interpreted as the expected number, per
unit time, of arriving customers who find the server taking a vacation and see
n — 1 customers already waiting in the system when they arrive.

Each time a customer arrives at the system seeing n — 1 customers who are
waiting for the vacationing server, the expected time duration until either the next
arrival or the end of the ongoing vacation (whichever occurs first) is E[min(A, V)],
due to the memoryless property of the exponential vacation time. Note that this
E[min(A, V)] is what we have in (4.18).

Suppose the ongoing vacation ends before the next arrival, then a busy period
begins in the presence of n customers. We now show that {1 — A*(v) — p}/p
in (4.19) is the joint quantity of (i) and (ii), where (i) is the probability that
the ongoing vacation ends before the next arrival and (ii) is the expected time
duration from the instant a busy period begins in the presence of n customers to
either the instant the next customer arrives or the instant the first service in the
busy period ends (whichever comes first) as follows:

o] t t—x
/ [o-Pr(V>t)+/ {/ spe="5ds
0 0 0

o
+/ (t— m),ue'“sds}ue_”da:] dA(t)
t~z

= / / 2(1 = eHt=a)y (¢ _w)e—ﬂ(t—w)}

+(t — z)eHt- ’)]Ve YTdrdA(t)

- _{ / / ve *dedAl(t / / HEDye e dad A(t) |
=_{/ — e )dA(t) - w}

= —{1-A"({v) - w}.
u{ }
Note that we made use of the definition of 1y by substituting n = 0 into (4.1).
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