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DIRECTIONAL LOG-DENSITY ESTIMATION

JiB Hun!, PETER T. KiM2, JA-YoNG K003 AND JINHO PARK?

ABSTRACT

This paper develops log-density estimation for directional data. The
methodology is to use expansions with respect to spherical harmonics fol-
lowed by estimating the unknown parameters by maximum likelihood. Min-
imax rates of convergence in terms of the Kullback-Leibler information di-
vergence are obtained.
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1. INTRODUCTION

Approximation of log-densities has long been part of the statistical literature.
For the Euclidean case, the idea dates as far back as Neyman (1937) where this
method is used for assessing goodness-of-fit, while much of the theory is later
developed in Crain (1974, 1976a, 1976b, 1977). By assuming a compact domain
along with positivity of the density in question, one estimates the probability
density by finite dimensional densities using some collection of basis functions.
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More recently, interest is in rates of convergence as well as practical model se-
lection. Stone and Koo (1986), Stone (1989, 1990), Barron and Sheu (1991),
Kooperberg and Stone (1991, 1992), Stone et al. (1997), and Koo et al. (1998),
develop logspline density estimation.

The main advantages of this approach are that this method usually fits the
data well with a small number of parameters and the estimator can take advan-
tage of whatever degree of smoothness necessary while at the same time being a
probability density. The consequence of the latter is that log-density estimators
can be used in a natural way for inferential statements. Furthermore, classical
maximum likelihood properties hold and simulations seem to reveal that they
perform quite well, even for very irregular densities. The main disadvantage
nevertheless is the computational complexity, however, with current computing
capabilities, this no longer is a formidable task.

In directional statistics where the sample space is the unit sphere, certain
parametric exponential models are of considerable importance i.e., the von Mises-
Fisher and the Bingham distributions. These distributions are important in that
a great deal of directional data can be analyzed by these parametric models (cf.
Fisher et al.,, 1993; Mardia and Jupp, 2000). Nevertheless, these models can
often be inadequate and so a richer class of models may be called for. Indeed,
the idea is to expand functions on a unit sphere in terms of some basis functions
where, the above parametric models have an explicit meaning in terms of these
basis functions. Furthermore, by including more terms, one can nest the von
Mises-Fisher and the Bingham distributions within a family of distributions and
therefore provide a richer class of exponential models.

We now provide a summary of what is to follow. In Section 2, we intro-
duce spherical Fourier analysis for functions defined on the (p — 1)-dimensional
unit sphere, SP~1. The spherical Fourier basis provides the necessary tool for
higher order expansions of functions on the unit (p — 1)-sphere. This section
also describes the log-density estimation based on an exponential family with
the spherical harmonic basis. We study consistency properties of the log-density
estimators through the Kullback-Leibler divergence in Section 3 for the (p — 1)-
dimensional unit sphere. As has been the situation in the Euclidean case, the
difficulty of estimation depends on the smoothness of the underlying density. We
extend the ideas from the Euclidean case to the directional framework. Calcu-
lation of the upper and lower bounds over Sobolev classes will also be made.
It is shown that the upper and lower rates of convergence (with respect to the
Kullback-Leibler divergence) are the same, therefore the convergence rate of the
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log-density estimator is minimax. All proofs are contained in Section 4.

2. DIRECTIONAL EXPONENTIAL FAMILY MODEL

‘We initially provide a brief discussion of the Fourier transform and its inverse
for functions defined on SP~!. A more thorough summary of spherical Fourier
analysis can be found in Miiller (1998). Other statistical works that use expan-
sions in spherical harmonics include Giné (1975), Wahba (1981), Hendriks (1990),
Healy and Kim (1996), Healy et al. (1998), and Kim and Koo (2000).

For some w = (wy,...,wp)! € SP71, the p — 1 spherical coordinates can be
represented by

w) = sinf,_; ---sinfy sin by

wo = sinf,_1 - --sinf; cos O,

wp—1 = sinfp_1 cosBy_o

wp = cosbfp_1

where 6; € [0,27), 6; € [0,m) for j = 2,...,p — 1 and superscript ¢ denotes
transpose. The normalized invariant measure is

dw = ———I;(fp//z) sin"20,_; -+ -sinfydf - - - dOp—1, (2.1)

where T'(-) denotes the gamma function.
Let CF(t), t € [-1,1] be a polynomial of degree r determined by the power
series

x
(1-2ta+a®)™=> CHH) .
=0

One notices that C/ 2(t) are the classical Legendre polynomials. Thus for general
4, these polynomials are generalizations of the classical Legendre polynomials and
are called the Gegenbauer (ultraspherical) polynomials.

For k = (kl,kg, e ,kp__Q), let ’Cg = {é _>_ k]_ 2 k’z 2 v Z kp_z Z 0} Define

kj_1—

p—2 )
vt = Al [T o2 (cos by j)(sinb,-5) Y7281, (22)
=1

where

Y () = Ch(cos ), YH(3h) = V2sinyCh_;(cos1p),
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I‘(1)/2 k +—4)/2)

Y7 (%) =0 and [4f]?
The collection .
(Yoo i ke Ky, €21, i=1,2}, (2.3)

are the eigenfunctions of A, the Laplace-Beltrami operator on SP~1, p > 3 and
AV =AY, where A =Ll +p—2), £>0.

Thus each ¢ > 0, determines the eigenspace &£, where

(2 +p—2)(l+p-3)
fip—2)1
Collectively, (2.3) is called the spherical harmonics for L?(SP~!) and (2.3) forms

a complete orthonormal basis (¢f. Xu, 1997).
We will need the addition formula for functions on $P~1. For w,v € §P~!

dimé&, =

3 [Ylf’l(w)Ylf’l(u)+Yk£’2(w)Yke’2(u)] ﬁ(}%/ﬁcép D20ty (2.4)
kekK,

In particular, any point on the 2-dimensional sphere, S? can be represented
by
w = (cos ¢ sin 6, sin ¢sin §, cos 6)*,

where 8 € [0,7) and ¢ € [0,27). Let

( (—1)‘1\/(% + (- q)!P,f(cosé?) cos(gp), g =1,2,...,¢,

2n(€ + q)!
Yiw) =} (254:; Y pe(cost), g=0, (2.5)
(2 +1)(£ - q)
\ (—1)9 2l 1 q) (cosO) sin(q¢), ¢ = -1,-2,...,—¢,

where qu are the associated Legendre functions and we use the unnormalized
invariant measure dw = sin § dfd¢. Then,

{vi:—£<q<¢,¢=0,1,...}
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is a complete orthonormal basis for L?(§2). For each fixed £ > 0, the eigenspace
& is the span of {Y : —¢ < g < £} which is called an invariant irreducible
subspace (see Beran, 1979). It is worth noting that in (2.5) when ¢ = 0, then Y{
is independent of ¢. Furthermore, there is antipodal symmetry when £ is even
since the exponent will involve even powers. In particular, the function is the
same on one half of the sphere as well as the other half.

Let f: SP~! - R We define the spherical Fourier transform of f by

fit = (@)Y (w)dw
sp-1
for k € K¢, £ > 0 and 4 = 1,2 where dw is defined according to (2.1). The
spherical inversion can be obtained by

2
F) =333 v (w)

£>0 keKy i=1

for w € SP~1. We note that spherical inversion should be interpreted in the L2
sense although it can hold pointwise with additional smoothness conditions.

2.1. Likelihood estimation

Let D, = {(é,k,i) d=1,....m ke Ky i = 1,2} and define B to be
the collection of all |D,,|-dimensional vectors B3, where for a given finite set, | - |
denote its cardinality. An exponential family of densities based on the spherical
harmonic basis (2.2) is defined by

f(w; B) = exp {s(w; B) —9(B)}, BEeEB, (2.6)

where

swid)= 3 AYEw) and v(8) =tog{ [ exp{s(wip)am}.

(Lki)EDm

Here the constant function Ybo,f.lﬂo =1 is absorbed in %(83). For notational con-
venience, let s(B) and f(B) denote the functions s(-;8) and f(-;8), B € B,
respectively. Furthermore, let S,,, be the span of {Ylf’i : (4,k,i) € Dy }. We note
that (2.6) is the usual definition for an exponential family, see for example Brown
(1986). For the directional case, this construction is formalized in Beran (1979),

see also Chapter 9 in Diaconis (1988).
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Let X1,...,X, be a random sample from some density f on SP~!. The log-
likelihood function corresponding to the exponential family is defined by

LBy =% Y BIYE(X;) -ny(B), BeB
=1 (£,k,5)EDm
Let

B = argmax L(B)
pBeB

be the maximum likelihood estimator (MLE) of 8 € B. Since the Hessian matrix
of ¥(-) is strictly positive definite, £(-) is a strictly concave function on B; thus
the MLE 3., is unique if it exists. We set fm = f(Bm) and refer to fi, as the
MLE of f. A formal list of likelihood properties are summarized in Beran (1979).

2.2. Entropy estimation

The relative entropy, or Kullback-Leibler (KL) divergence from density f; to
density fo on SP~! is defined by

D(fillf2) = /Sp_l f1(w)log %dw.

Let S, be the linear span of {Ylf’i : (4,k,1) € D }. Define

By = argmaxD(f|f(8)),
BeB

and set fy = f(By). We will refer to fi; as the information projection of f onto
Sm. The density fi (among the class of exponential densities) minimizes the
KL-divergence to f. From Koo and Chung (1998), the information projection fy
exists uniquely.

The KL-divergence decomposes into the sum of two terms which correspond
to approximation error and estimation error, respectively. It is characterized by
an orthogonality-like relation

D(f11£(8)) = D(fllfiw) + D(fullf(B)) (2.7)

valid for all densities (2.6).
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3. AsympTOTIC RESULTS

In this section, we demonstrate that the MLE is rate minimax in the Kullback-
Leibler sense. We note that such results are important in physics, see for example
Chandler and Gibson (1989) and Taijeron et al. (1994) where their requirements
are for data analysis on hyperspheres.

We will use the following notation. For two positive sequences {a,} and {b,},
let ap € b (Kp) mean ap = O(by) (Op) as n — oco. If ap K by (Kp) and
bp, < a, (Kp) then denote this by an < by (Xp).

Let

72 = inf ||logf - s, and veo = inf [|logf - s

be the L? and L™ error approximations for some positive function f by some
s € S;,. We can establish an upper bound approximation error for D(f}| fi1) in
terms of 2 under bounded conditions on f.

THEOREM 3.1. Suppose there exists an A > 0 such that ||s||lec < Al|s||2 for

all s € Sy, Aya = 0(1) and Yoo < 00. If M1 > 0 such that Ml_1 < f < M then
for n sufficiently large

() D(lfn) < “5he™3;

.e A2 p_:l mp_]-
(i) If ——— =o(1), then D(fullfm) <5

For a differentiable function f : SP~! — R stronger results can be obtained.
We would like to present the discussion in terms of the parameter space being
some function class of continuously differentiable functions on S?~!. The Sobolev
space of order v > (p — 1)/2, is defined to be the collection of continuously
differentiable functions up to and including v with the v** derivative being square
integrable. For some functionh =}, ; lAzfc’inf *, denote its Sobolev norm of order

v by .
a5 = 220+ 2 T
Lk,i
For some constant M > 0 define F,,(M) by

Fy(M) = {f :log f is Sobolev of order v > (p — 1)/2 and ||log f|l, < 1+ M}.

Consider an unknown distribution Py depending on the density function f €
F,(M). Suppose {b,} is some sequence of positive numbers. This sequence is
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called a lower bound for f if

limliminfinf sup P¢(D(f|If) > cbn) =1,
c—=0 n f feFr. (M) f( ) n)

where the last infimum is over all possible estimators f based on Xi,...,X,.
Alternatively, the sequence in question is said to be an upper bound for f if there
is a sequence of estimators f such that

lim limsup sup P;(D(f||f) > cbs) = 0.
c—Q n f€.7"u(M)

The sequence of numbers {b,} is called the optimal rate of convergence for f if
it is both a lower bound and an upper bound with the associated estimators f ,
being called asymptotically optimal.

We have the following results.

THEOREM 3.2. If f € F (M) withv > (p—1)/2, then
D(§||fmt) <p n~2/@ 427D
where m < nl/@+P-1) 45 n o 0.
THEOREM 3.3. Suppose that f € F,(M) with v > (p—1)/2. Then
n~2/@) < DS f)
where f 1s any density estimator based on X1,...,X,, as n — oo.

We can now use this lower bound along with the upper bound to obtain
optimal rates of convergence for f in the KL-divergence sense. Puttmg together
Theorems 3.2 and 3.3 we immediately get the following.

COROLLARY 3.1. Suppose that f € F,(M) with v > (p—1)/2. Then the op-
timal rate of convergence for estimating f equals n=2" [@v+p=1) gnd fo is asymp-

totically optimal.

4. PROOFS

Let ]3] be the Euclidean norm of a vector 8 € B. For g = log f, let
it
si@= >, &%,
(e,k3)eDY,

where DY, = D, U{£ =0, k=(0,...,0), i=1}.
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4.1. Proof of Theorem 8.1

The first task is to show that B exists with [ flelf’i = [ lef’i for all
(£,k, i) € Dy, when n is sufficiently large. Set 8* = ([ Y,%'f) and 6 = ([ ;" £ (8)),
where § = (gfj) and (4,k,1) € Dy,. The entries in the vector 8* — @ are seen to
be coefficients in the L2(SP~!) orthonormal projection of f — f(8) onto S,;,. By
Bessel’s inequality, the boundedness of f, we have

o= —o]* < [I5 - (@)l
2
< [ U1
< M7lg = s(a);exp {2llg - s(0)]l oo — 2(a8.0 + ¥(8)) }
< M2 47“72
For the last inequality we have used the fact that |1/)( +g8 1 l < “g — s(g)”oo,

since ¥(d) + 5781 0= log { [exp(s(g) —g)f}. From this same fact we have

lllog f/£ ()|, < 2|lg — 5(9)|l, = 2700 and together with M; " < f < M,
we obtain

|| log f(& ” <log My + 27.
Now if Mje?¥~y, < 1/(4ebA), that is, if Ay = o(1), then we may conclude that
the solution By, to the equation ( [ Ye’z f(B)) = 6* exists and that

| tog fia/ £ (8) ||, <€,

where € = 4M?7exp(4y + 1)Ay2. So by the triangle inequality, we obtain
tog £/ ful., < 2700 + ¢, and

H log fkl“oo <log M1 + 2y + €.

Therefore, by boundedness of f, we have

D(fllfi) < D(FIf(8)) < 5O by ]lg — s(g)][2 < 5 Mre™3.

For the proof of the second part of Theorem 3.1, we have to show that
D(fullfm) is small with high probability. Let ¢* = ([ Y,**fia) which is the
same as ([ Y 'f). Also let O = (5= Y“(X ;}/n). Whenever a solution
B € B to the equation ( [ Y, £(8)) = O exists, we recognize fmi = f(Bm1) a8
the MLE. With these choices

1Bt = Bul* = > {%i(ynf’i(xj)—Efof’i(Xj))}z-

(£.X,1)€Dm j=1
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By Chebyshev’s inequality and the boundedness assumption on f, for some C; >
0 we have
1= vt X. £ 2
Pl >0 323 (%X) - ER(X) p > Ci[Dnl/n
(Lki)eDm ~ =1
n

<omm] X LS o) - gy} |

(tki)ED, ©  j=1

1 2472
<5 Z E; (")
C1|Dm (£.k,3)EDm

Then, |8 —ﬂk1”2 &p [Dml/n. If (C1|Dml/n) Y2 < 1/(4ebA), or equivalently, if
A\/|Dp|/n = o(1), then except on the set above (whose probability is less than
M;/Ch) it can be shown B, exists and D(fullfmi) = Op(|Dm|/n) except on a
set of probability less than M;/C. This completes the proof of Theorem 3.1.

4.2. Proof of Theorem 3.2.

First we show that if ' f € F,(M), then the boundedness condition on f is
satisfied. Write g = 3° §o*V,%". Observe that

lg@)” < (3 @+ 28 ) (X @ +207 %)

(A X)) (A X))

< (1+M)D (14 X)) dimé,.
[4

In the above, we use the addition formula (2.4). Since v > (p — 1)/2, the series
el + Ag)7¥dim&, converges thus giving us a bound.

To prove Theorem 3.2, we need the bounds A, 2 and 7. To determine A,
choose any element s = Z(e,k,i)evg, ﬁf(’inf’i in S;,. By the Cauchy-Schwarz and
the Parseval inequalities, we have that, uniformly in w € §P~1,

sl (5 ) (X )

(£,ki)EDY, (£,k,i)€DY,
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. 1/2

<( X mE@F) sl
(£,k2)EDY,

<K

m
(- aimez) st
=0

< mP=12|jg],.
Let D%° = {(£,k,1) : £ > m,k € Kg,i = 1,2}. Since

T+xa)” > @< Y @+

AD2 (£ki)EDYR’

) |38 < 1+ M,

we have the bound on v, as follows

B S i< Q+M)(1+An) T <m7
(£.x,1)eD%e

It follows from the Cauchy-Schwarz inequality and the addition formula (2.4)
that the error 2, is bounded by

Y < (T WE@Pae™) (T @) 1)

(£k,3)EDN’ (8k,i) €Dy’ (£,k,5)€DS,
0

< (1+M) D (1+ ) “dim&,
l=m+1
& m~AHPTL (4.1)

Choose m = nl/(2+p=1) Then v, & m~2+P=1) = o(1), 75 x n~2/(Zv+p-1)

Ayy & m@® /2 D)/ < n~2/@4P-Y) and A/[Dnl/n < mPl/\/n =
n{(P=1)/2-v)/2(v+(=1)/2)  Consequently, from Theorem 3.1 and the Kullback-
Leibler decomposition (2.7), the proof of Theorem 3.2 is now complete.

4.8. Proof of Theorem 3.3.

The approach we will follow is to first specify a subproblem, followed by using
Fano’s lemma to calculate the difficulty of the subproblem. The lower bound will
then appear.

Let N be a positive integer depending on n and define

V={{ki):¢=N+1,...,.2N k€ Kp,i = 1,2}.
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Let 'rﬁ’i be either 0 or 1 for (4,k,7) € V and define 7 = {'rﬁ’i : (6,k,3) € V}.
Consider the function

fr=exp {MzN—”_(p_l)/2 Z 'rﬁ’inf’k’i - 1/)(1')} (4.2)
(&k,1)eV

where M, is a constant to be determined below. Finally, let
Fun(M) = {fr : 7 €{0,1}/V}},

and assume that N — oo as n — oo.
Applying the Sobolev norm to (4.2), we get

. 112 v i
om0 N i = MENRETD ST (140)” ()
(tki)eV (tki)eV
<SMEN~==D N (14 )"

(Lki)eV

2N
= MZN"20~D N (14 X)"dimé,

£=N+1
< M3, (4.3)
l‘/’(“')l = llog [/exp{MzN“’—(P—l)ﬂ Z (Tﬁ’i)2ylf’i}”
(&k,i)eV
< “M2N—v—(p—1)/2 Z Tll(,inf,i
(eki)eV
< CiM,. (4.4)

In the above, by using the same argument as in (4.1) together with (4.3) and
(4.4) we have

ltog 712 = 302 57 aw -yl

Lk )eV
=(r)2+ Y (14 )" MEN"2PH(7])?
(Lki)eV
< C1M3
< (1+ M)

if My is chosen sufficiently small. Consequently, we have shown that fr € F, (M),
for sufficiently large n, so that

Fun(M) C F (M).
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Now let us write g, = = MyN—v-(-1)/2 Z(gk,,)ev ( )Y“ — (7 (r)), for

r = 1,2, such that g; # go. Since {Yb‘” Yu{vH: (6,k,5) € V} are orthogonal,
— 2 nr—2v—(p—1) . £,i
o1 - g2||2 = MEN |y @ -
(Lki)eV

2
+ (p(r(1) - $(7(2)))
> CiMEN~——(-1),
For f, =e9 € F, n(M), it follows from the boundedness condition that
D(fillf2) > —21°gM1M g1 = g2|3 > CLN—2=(-D),

It follows from Lemma 3.1 of Koo (1993) that there exists a subset Fp (M) of
Fun(M) such that

D(fillf2) > CiN7, f1 # fa € Fon,(M) and log (|Fy,(M)| — 1) > C; NP~

for sufficiently large n. Since ||f]lco < M for large n, we have

D(fillf2) < e”l°gf1/f2lloo/fl(loih)2

. 142
<a| ¥ MeNemriv
(L k,)eV
< ClN—2V.

By Fano’s lemma, see Birgé (1983), Yatracos (1988) and Koo (1993), if f is
any estimator of f, then

sup P;(D(fllf)>eN") > sup Py(D(f|f)>cN7")
JeF, (M) fEFun(M)

> sup P;(D(f|f)>cN7Y)
fEFY o (M)

_ nD(fil|f2) +log?
log (|72, (M)] - 1)’

It therefore follows that

sup )Pf (D(f||fm1) > eN7%) >0

v

for ¢ > 0 as n — oo. Now choose N such that N < n!/(2+(#-1)) {5 obtain the
desired result.
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