The Korean Journal for History of Mathematics Vol. 17 No. 4 (Nov. 2004), 27-36

Godel’s Critique of Turing’s Mechanism

Center for Cognitive Science, Yonsei University Woosik Hyun
godel@yonsei.ac.kr

Dedicated to Professor Taidong Han on the 80th Birthday.

This paper addresses Gédel's critique of Turing's mechanism that a
configuration of the Turing machine corresponds to each state of human mind.
The first part gives a quick overview of Turing's analysis of cognition as
computation and its variants. In the following part, we describe the concept of
Turing machines, and the third part explains the computational limitations of
Turing machines as a cognitive system. The fourth part demonstrates that
Godel did not agree with Turing's argument, sometimes referred to as

mechanism. Finally, we discuss an oracle Turing machine and its implications.

Key words: (oracle) Turing Machine, mechanism, Godel's incompleteness

theorem, non-computability

0. Mind to Computing Machine

A physical symbol system is an instance of a Universal Turing machine. Thus,
we may deduce that cognition can be realized by a Universal Turing machine.
The development of the first digital computer and of the automata theory
originates with Alan Turing’s work in “On Computable Numbers, with an
Application to the Entscheidungsproblem(1936)"[1]. The chess programs of C.
Shanon and A. Turing, LISP of J. McCarthy, Logic Theorist and General Problem
Solver of A. Newell, H. A. Simon and J. C. Shaw, PROLOG of F. Green, R.
Kowalski and A. Colmerauer, SOAR of A. Newell, J. Laird, and P. Rosenbloom,
Automated Mathematician program of R. Davis and D. B. Lenat, and Boyer-Moore
theorem prover of R. S. Boyer and J. S. Moore are just some of the significant
theoretical and historical works worth noting in cognitive science.

Since Turing's abstract device is regarded as the embodiment of mathematical

27

Gédel’s Critique of Turing’'s Mechanism

thinking at the most fundamental level, then the computer and cognitive scientists’
claim on the Turing machine as a conceptual tool is now at least as strong as the
logician’s one. Its significance for the computability theory is fundamental: within
a finite time, the Turing machine is capable of any computation that can be done
by any modern digital computer, no matter how powerful. Thus, for the theoretical
study of the ultimate problem-solving capacity of the real computer, the Turing
machine and its degree is a necessary condition.

Turing’s analysis transformed the term finite procedure into mechanical
procedure. Consequently, a function is computable, or effectively calculable, if it
can be calculated by a finite mechanical procedure, that is, by a Turing machine.
Kurt Godel claimed: “a formal system can simply be defined as any mechanical
procedure for producing formulas, called provable formulas”[2]. In this sense, a
function is Turing computable if it is definable by a Turing machine[1l]. According
to this framework, a formal mind as a Turing machine yields m on input n if,
when the machine is started on input n, it eventually halts, and at the moment

when it halts, the tape represents m.

1. The Concept of Turing Machines

The Turing machine is a finite automaton with unlimited tape as a memory
device. It is mathematically equivalent to the class of the Herbrand-Goédel-Kleene
equation system, that is, the class of general recursive functions[3, 4]. Rather,
Godel endorsed the concept of Turing machines as a generally accepted property
of effective calculability, not as general recursion defined by himself[5]. Turing
devised an idealized human computing agent with the concepts of function
produced by mechanical procedure. Turing’s theorem states that any function
calculable by an idealized human computer is Turing computable{1]. Furthermore,
Turing’s thesis asserts that if a function is informally computable, then it is
computed by a Turing idealized human computer, meaning that every algorithm
can be programmed on a one-tape Turing machine.

A Turing machine is characterized by the following:

(1) a list of states called by Turing machine configurations: a specification of

how many states there are.

(2) a finite alphabet of symbols, including blank and stroke.

28

Woosik Hyun

(3) a finite set of lists of instructions. Each instruction has the form of the
quintuple (7, s, £ @, j), where 7 and j are numbers no greater than the
number of states, s and ¢ are elements of the alphabet, and @ is either
R(move one right) or L(move one left). The instructions may be read: if in
state 7 and scanning a cell containing s, then replace s with f ,move as @

directs, and go into new state ;.

Let S be a finite set of symbols including Blank 0 and Stroke 1, and let
q1, g2, ... be symbols of states not in S. Then a Turing machine on S is a
finite set of quintuples (g;, s, ¢, @, q;), where s and ¢ are in S and @ is one of
the symbols “R(move one right) or L(move one left),” such that no two distinct

quintuples have the same first two members. The symbol ¢; represents the state
i. Formally, a Turing machine is a mapping 7M such that for some natural
number #,

™:{0,1,2, -, n}x{0, 1}— {0, 1}x{L, R}x{0, 1, 2, ---, n}
where L stands for “move one left” and B “move one right.”

Turing compared a man in the process of computing a real number to a
machine that is only capable of a finite number of conditions ¢, g3, ..., ¢, that
is called “m-configurations.” According to Turing, the behavior of the machine is
determined by the m-configuration ¢, and the scanned symbol s,. This pair
(g, S,) is called the configuration. Thus, the configuration determines the

possible behavior of the machine. Since there are only finitely many pairs, the
behavior of the machine is specified by a finite list.

UNIVERSAL TURING MACHINE (Turing 1936). For a recursive function
F, there is a universal Turing machine UTM such that Fpy (x) = Fymy(n, x),

for any Turing machine 7TM, and for any natural numbers # and x. This means

that there is a universal Turing machine that can simulate any Turing machine.

2. The Non-computability of Turing Machines

29

Godel’s Critique of Turing’s Mechanism

In 1936 paper, A. Turing proved that Hilbert's 10th problem, Endscheidungs-
problem(decision problem), of discovering a method for establishing the truth or
falsity of any statement in the first-order calculus, was impossible to solve by the
Turing machine., Gédel stated,

In consequence of later advances, in particular of the fact that, due to
A. M. Turing’s work, a precise and unquestionably adequate definition
of the general concept of formal system can now be given, the
existence of undecidable arithmetical propositions and the
non-demonstrability of the consistency of a system in the same system
can now be proved rigorously for every consistent formal system
containing a certain amount of finitary number theory. (Goédel [2])

A function f is Turing computable if there is a Turing machine 7M that
computes f For an #-place function f TM computes f if and only if, any
Xy, ..., X, of the natural numbers, TM produces f(x, ..., X,) on input x. It is

well known that Turing computable function f is a decidable (#z4 1)-ary relation
and a recursively enumerable relation.

Turing, furthermore, demonstrated the limitations of Turing computability,
proving that there are unsolvable problems, e.g., the Haliting Problem, in the
Turing machine system{l]. There is a fundamental result in unsolvable problems:
There exists a recursively enumerable set which is not recursive. The halting
function for the Turing machine is a mechanical implementation of Godel's
undecidable sentences. Godel credited that Turing’s 1936 paper provides an
adequate analysis of mechanical procedures and that, as a consequence of his
work, a general formulation of the incompleteness theorems can be given[2].

UNSOLVABILITY OF TURING MACHINE (Turing 1936). There is no
Turing machine M such that, for all e and #, if the Turing machine
Goédel-numbered e produces something on input # then M produces O on input
(e, n) if the Turing machine Gédel-numbered e produces nothing on input #
then M produces 1 on input (e, #). Mathematically, this means: Let K

= {x: ¢,(x) halts} where ¢, is partial recursive function computed by a Turing

machine program with Godel number e. Then K is recursively enumerable, but

_30..

Woosik Hyun

not recursive.

This result is known as the effective unsolvability of the Halting problem for
the Turing machines. This is equivalent to Church’s theorem that the decision
problem for first-order calculus is not solvable. Thus, the results show that
Hilbert’s Entscheidungsproblem can not be solved. Both Godel's and Turing's
theorems show the limitations of the first-order calculus system or of recursive
universal machines. Thus, if the mind is a Turing machine and cognition is a
Turing computable function, then the mind would not be able to compute such
Halting functions, because they would not be in the class of cognition.

NON-COMPUTABILITY OF COGNITION AS TURING COMPUTABLE
FUNCTION. Let human cognition be a Turing computable function. Then there
is non-computable cognition on the natural numbers. This is obvious by Cantor’s
diagonal idea. Suppose that all cognitions are computable in the sense of Turing

computability. Then there are countable numbers of cognition C. Thus, one can

enumerate the cognitions Cj, C,, Define a cognition C on natural numbers by
Clx)=CJx)+1. Since Cis Turing computable, it must appear somewhere in
our list of the cognition. Put C=C,. Then C(k)=C,k)+1 if and only if

C(k), which leads to a contradiction. Hence, C is not computable.

3. Godel’s Critique of Turing’s Argument

Turing claimed that it is possible to construct a machine to do the work of the
human computer{1l]. According to Turing, to each state of mind of the human
computer corresponds an m-configuration of the Turing machine. As Turing
asserted:

The behaviour of the computer [the human computer] at any moment
determined by the symbols which he is observing, and his “state of
mind” at that moment. We may suppose that there is a bound B to
the number of symbols or squares which the computer can observe at
one moment. If he wishes to that the umber of states of mind which
need be taken into account is finite. The reason for this are of the
same character as those which restrict the number of symbols. If we

31

Godel’s Critique of Turing’s Mechanism

admitted an infinity of states of mind, some of them will be “arbitrarily
close” and will be confused. Again, the restriction is not one which
seriously affects computation, since the use of more complicated states
of mind can be avoided by writing more symbols on the tape. (Turing
[1], p.136)

His idea is based on that the simple operations of the Turing machine must

include:

(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square within squares of
one of the previously observed squares.

According to Turing, it may be that some of these changes necessarily involve
a change of state of mind. The most general single operation must therefore be
taken to be one of the following:

(A) a possible change (a) of symbol together with a possible change of
state of mind.

(B) a possible change (b) of observed squares, together with a possible
change of state of mind. (Turing [1], p.137)

In “Some Remarks on the Undecidability Results(1972)," Godel! stressed that
Turing gives an argument that mental procedures cannot go beyond mechanical
procedures[6]. Although Gédel accepted Turing's analysis of the computability, he
did not agree with Turing on this point. Godel told that Turing’s argument is

inconclusive:

What Turing disregards completely is the fact that mind, in its use, is
not static, but constantly developing, ie., that we understand abstract
terms more and more precisely as we go on using them, and that more
and more abstract terms enter the sphere of our understanding. (Italics
in original, Godel (6], p.306)

In Goédel's view, Turing disregarded temporal elements of the mental capability.
In contrast, he avoided the term static. Rather, Godel himself focused on the

developing process as a significant capability of cognition. Consequently, Godel

32

Woositk Hyun

suggested two possibilities such as existence and convergence: (1) There may
exist systematic methods of actualizing this development; (2) Turing’s number of
distinguishable states of mind may converge toward infinity. This process refers
to forming of stronger and stronger axioms of infinity in set theory. According to
Godel's account, such developing processes would produce a non-recursive number

-theoretic function.

The existence of finite non-mechanical procedures is not excluded by Turing's

analysis. Godel claimed:

[Tlhe question of whether there exist finite non-mechanical procedures,
not equivalent with any algorithm, has nothing whatsoever to do with
the adequacy of the definition of “formal system” and of “mechanical
procedure.” (Italics in original, Gédel [2], p.370)

Godel asserted that his incompleteness results do not limit the powers of human
reason. According to Godel, the incompleteness results do not establish any
bounds for the powers of human reason, but rather than for the potentialities of
pure formalism in mathematics([2], p. 370). Unlike Turing, Godel chose a positive
way to the higher powers of human cognition with respect to Turing's

mechanism,.

4. Beyond Godel’s Limitation?

To overcome the computational limitation of the Turing machine, in “Systems of
Logic Based on Ordinals(1939),” Turing proposed an extension of his machine
model(7]. This idea gave rise to important issues such as arithmetical hierarchy
and relative recursiveness [8).

ORACLE TURING MACHINE. An oracle Turing machine is simply a Turing
machine with an extra “read only” tape, called the oracle tape, upon which is
written the characteristic function of some set O called the oracle, and whose
symbols cannot be printed over. The old tape is called the work tape. The reading
head moves along both tapes simultaneously. An Oracle Turing machine is a

function OTM such that for some natural number 7,

33

Godel’s Critique of Turing’s Mechanism

OoTM:{0,1, 2, ..., »}x{0, 1, 2}x{0, 1} = {0, 1} x{L, R}x{0, 1, 2, ..., n},

where 0, 1,2 is the oracle tape alphabet, L stands for “move one left” and R for
“move one right.”

An oracle O for a function f: N—N is a device that, for a natural number
ne N, responds the value f(%). Suppose A and B are arbitrary sets, and for all
neN n€A if and only if f(»n)=B Then, we have a decision procedure for
membership in A if we have a decision procedure for membership in B. If there
exists a decision procedure which computes f(#) from # using an oracle O for

B, for all neN, then A is reducible to B via f, written A<,;B. The oracle

tape, therefore, is a query tape. An oracle O for B is a external agent that will
supply the correct answer to questions of the form “x B?" or not, for every
x=N. We can replace f by a Turing machine if fis recursive. By this, we can
consider the problem of relative computability or relative reducibility. Although the
oracle has a new and powerful feature, it is the least constructive approach. It is
remarkable f;o note that

(1) O is not necessarily identified with an algorithm,

(2) B may not be recursive,

(3) f may accept members of NV as arguments.

The oracle model is clearly more powerful than its predecessor, but it is also
clear that the power comes from the addition of a function that was previously
not computable. -Subsequently, this leads to a recursive function that accepts
members of the uncountable set as inputs, which raises the problem of relative
computations on recursive infinite functions. The extension model, however, still
cannot give us any real idea of how to compute the halting function. Moreover,
such an infinite machine is beyond the scope of our debate, for it does not satisfy
the assumptions underlying the finite machine, the type specified, or the

consistency condition.

In Turing’s view, for a given formal system S;, one can add the statement

Con(S;), consistency of S;, as a new axiom to S in order to obtain S,

.34.

Woosik Hyun

Similarly we can obtain Con(S,), Con(Ss), His finding implies that any true
sentence is provable at some state in the transfinite iteration process. This
process is clearly not complete within some finitary methods. Consequently, it is
totally dependent on the assumption and philosophy of logicians.

References

1. Turing, A., “On computable numbers, with an application to the Entscheidungs-
problem,” Proceedings of the London Mathematical Society, 42(1936), 230-265.

2. Gédel, K., “Postscriptum to Gédel 1934 (1964)," Collected Works I Publications
1929-1936, S Ferferman et al.(eds), Oxford University Press, 1986.

3. Godel, K., “On undecidable propositions of formal mathematical systems(1934),”
in Collected Works I' Publications 1929-1936, S. Ferferman et al.(eds), Oxford
University Press, 1986.

4. Kleene, S.C., Introduction to Metamathematics, D. Van Nostrand, 1952.

5. Gédel, K., “Some basic theorems on the foundations of mathematics and their
implications{1951),” in Collected Works III: Unpublished Essays and Lectures,
S. Ferferman et al.(eds), Oxford University Press, 1995.

6. Godel, K. “Some remarks on the undecidability results(1972),” in Collected
Works 1I: Publications 1938-1974, S. Ferferman et al.(eds), Oxford University
Press, 1990.

7. Turing, A., “Systems of logic based on ordinals,” Proceedings of the London
Mathematical Society, ser. 2, 45(1939), 161-228.

8. Soare, R., Recursively Enumerable Sets and Degrees, Springer-Verlag, 1987.

35

gt SFAFOFS] 2] A17H A42(2004F 118), 27-36

99 AAF qF A9 w3y
dAdEE AAFA T Y

T 789 Z1AFSd dE Ad8 HFPE qER. 97dM FI9 JAF
o 8 Zlzujdol Ae vg9 2 el EH%%\:}— A& v A 7
BoAe AdozAe AxAAd g 7o £4& HEIH F AA FEAME F
714 Ade 4RI, A HA FRAME AAH AN 7I7A7 ZE 4 }
M gAE A58, o A4 FEAMe AL FI9 AT FdA dhS2
oln, iAoz QFF FIY7IAF 1 Fed g3t =@tk

FHoO : (288) FI2A, AF, A4 Eg4a8RE, ALENSA
2000 Mathematics Subject Classification: 03D10 01A60 03A05 63Q05
ZDM Classification : E20 M50 R40

o)

:1mr}r

oE it

ol A
717

NI

36

