Abstract
Existing contents-based video retrieval systems search by using a single method such as annotation-based or feature-based retrieval. Hence, it not only shows low search efficiency, but also requires many efforts to provide system administrator or annotator with a perfect automatic processing. Tn this paper, we propose an agent-based, and automatic and unified semantics-based video retrieval system, which support various semantics-retrieval of the massive video data by integrating the feature-based retrieval and the annotation-based retrieval. The indexing agent embodies the semantics about annotation of extracted key frames by analyzing a fundamental query of a user and by selecting a key-frame image that is ed by a query. Also, a key frame selected by user takes a query image of the feature-based retrieval and the indexing agent searches and displays the most similar key-frame images after comparing query images with key frames in the database by using the color-multiple-partition histogram techniques. Furthermore, it is shown that the performance of the proposed system can be significantly improved.
기존의 내용기반 비디오 검색 시스템들은 주석기반 검색 또는 특징기반 검색과 같은 단일 방식으로만 검색을 하므로 검색 효율이 낮을 뿐 아니라 완전한 자동 처리가 되지 않아 시스템 관리자나 주석자의 많은 노력을 요구한다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의를 분석하고 질의에 의해 추출된 키 프레임의 이미지를 사용자가 선택함으로써 인덱싱 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 특징기반 검색의 질의 이미지가 되고 인덱싱 에이전트는 제안하는 다중 분할 칼라 히스토그램 기법을 통해 질의 이미지와 데이터베이스의 키 프레임들을 비교한 후 가장 유사한 키 프레임 이미지를 검색하여 사용자에게 디스플레이 한다. 제안하여 구현된 시스템은 현저히 향상된 성능을 보였다.