Bacterial Community Structure and Diversity Using 16S rDNA Analysis in the Intertidal Sediment of Ganghwa Island

16S rDNA 분석을 이용한 강화도 장화리 갯벌 퇴적물 내 미생물 군집구조 및 다양성

  • 조혜연 (한국해양연구원 해양생물자원연구본부, 인하대학교 해양학과) ;
  • 이정현 (한국해양연구원 해양생물자원연구본부) ;
  • 현정호 (한국해양연구원 해양생물자원연구본부)
  • Published : 2004.09.01

Abstract

T-RFLP analysis and clone sequencing analysis based on bacterial 16S rDNA were conducted to assess bacterial community structure and diversity in two layers (0-1cm, 6-7cm depth) of the sediment from Janghwari intertidal flat in Ganghwa Island. The results of T-RFLP (terminal-restriction fragment length polymorphism) analysis using restriction enzyme HhaI showed that the T-RFs of various size ($60{\pm}2$) bp-($667{\pm}2$) bp) appeared evenly at the surface sediments but two T-RFs with 60(${\pm}2$)bp and 93 (${\pm}2$)bp predominated at 6-7cm depth. Analysis of partial sequences for 172 clones revealed that 98% of the clones were not matched with the sequences of cultured bacteria strains in the GenBank (${\geq}similarity$ 98%), and approximately 86% of them were classified as different phylotypes. Most clones belonged to $\alpha$-, $\gamma$-, and $\delta$-Proteobacteria, Acidobacteria/Holophaga and green nonsulfur bacteria group. Proteobacteria group occupied the highest proportion in both layers (69% at 0-1cm depth and 46% at 6-7cm depth). $\gamma$-Proteobacteria and $\delta$-Proteobacteria that are associated with oxidation and reduction of sulfur compounds were appeared to be dominant, and comprised 21.5% and 15.7% of total clones, respectively. Overall results indicated that extremely diverse bacterial groups were inhabiting in the sediment of Ganghwa intertidal flat, and bacterial communities associated with the behaviour of sulfur seemed to playa significant role in the biogeochemical environment in this anoxic sediment.

강화도 장화리 갯벌 퇴적물 내의 두 층(0-1cm, 6-7cm 깊이)에 서식하는 미생물 군집구조 및 다양성을 비교하기 위해 16S rDNA의 서열에 기초한 말단제한절편 다형성(terminal-restriction fragment length polymorphism ; T-RFLP)분석과 클론의 염기서열 분석을 실시하였다. 제한 효소HhaI을 이용한 T-RFLP분석 결과표층(0-1cm)에서는 다양한 크기(($60{\pm}2$) bp-($667{\pm}2$)bp)의 말단제한절편(T-RF)들이 고른 분포로 나타났으며, 저층(6-7 cm)에서는 ($60{\pm}2$)bp와 ($93{\pm}2$) bp의 T-RF가 우세하게 나타나 표층에 비해 미생물 군집구조가 단순한 것으로 조사되었다. 총 172개의 클론의 16S rDNA부분 염기서열 분석 결과 98% 유사도 수준에서 98%의 클론이 GenBank에 등록된 염기서열 중 배양된 어떤 미생물과도 일치하지 않는 것으로 조사되었으며, 이 중 148개의 클론(86%)이 서로 다른 계통형(phylotype)으로 분류되어 다양한 미생물이 서식하고 있음을 알 수 있었다. 대부분의 클론들은 $\alpha$-, $\gamma$, $\delta$-Proteobacteria, Acidobacteria/Holophaga 그리고 green nonsulfur bacteria 그룹 내에 속하였고, 이 중 Proteobacteria 그룹이 표층에서는 전체의 69%, 저층에서는 46%의 높은 비율을 차지하였다. 또한 황원소의 산화와 환원에 관련된 $\gamma$-Proteobacteria와 $\delta$-Proteobacteria 그룹이 각각 21.5%와 15.7%로 우세하게 나타나 갯벌의 미생물 군집 구조가 혐기성 환경에서의 황환원에 의해 생성된 황의 거동과 밀접한 연관이 있음을 시사하였다.

Keywords

References

  1. 김경민,서영훈, 신주옥, 이혜영 , 정인실 , 조은희,하영미.2003. 미생물학 제5판 라이프사이언스 p.428-472
  2. 이명숙 , 홍순규 , 이동훈 , 김치경, 배경숙 , 배경숙.. 2001. 16S rRNA 유전자 분석에 의한 전남 순천만 갯벌의 세균 다양성. 한국매생물학회지 37, 137-144
  3. 한국해양연구원. 1998. 제한절편말단분석법으(T-RELP),을 이용한 해양퇴직물의 세균 군집분석 P.97
  4. 한국해양연구원. 1999. 갯벌이 효율적인 이용과 보존을 위한 연구 p.841
  5. 헌정호 , 이홍금 , 권개경. 2003. 해양환경의 황산염 환원율 조절요인 및 유기물 분해에 있어 황산염 환원의 중요성. 한국해양학회지 8, 210-224
  6. 현정호, 목진숙, 조혜연, 조병철, 최중기. 2004. 하계 강화도 갯벌의 혐기성 유기물 분해능 및 황산염 황원력. 한국습지학회지 6, 75-90
  7. Amann, R., W. Ludwig, and K.-H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169
  8. Bowman, J.P. and R.D. McCuaig. 2003. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl. Environ. Microbiol. 69, 2463- 2483
  9. Canfield, D.E., B.B. Jørgensen,, H. Fossing, R. Glud, J. Gundersen, N. B. Ramsing, B. Tramdrup, J. W. Hansen, L. P. Nielsen, and P. O. J. Hall. 1993. Pathways of organic carbon oxidation in three continental margin sediments. Mar. Geol. 113, 27-40
  10. Capone, D.G. and R.P. Kiene. 1988. Comparison of microbial dynamics in marine and freshwater sediments : Contrasts in anaerobic carbon catabolism. Limnol. Oceanogr. 33, 725-749
  11. Cifuentes, A., J. Anton, S. Benlloch, A. Donnelly, R.A. Herbert, and F. Rodriguez-Valera. 2000. Prokaryotic diversity in Zostera noltii-colonized marine sediments. Appl. Environ. Microbiol. 66, 1715-1719
  12. Dhillon, A., A. Teske, J. Dillon, D.A. Stahl, and M.L. Sogin. 2003. Molecular characterization of sulfate-reducing bacteria in the Guaymas basin. Appl. Environ. Microbiol. 69, 2765-2772
  13. Dunbar, J., L.O. Ticknor, and C. R. Kuske. 2000. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol. 66, 2943-2950
  14. Finlay, B. J. 2002. Global dispersal of free-living microbial eukaryote species. Science 296, 1061-1063
  15. Frischer, M.E., J.M. Danforth, M.A.N. Healy, and F.M. Saunders. 2000. Whole-cell versus total RNA extraction for analysis of microbial community structure with 16S rRNA-targeted oligonucleotide probes in salt marsh sediments. Appl. Environ. Microbiol. 66, 3037- 3043
  16. Gray, J.P. and R.P. Herwig. 1996. Phylogenetic analysis of the bacterial communities in marine sediments. Appl. Envrion. Microbiol. 62, 4049-4059
  17. Hugenholtz, P., C. Pitulle, K.L. Hershberger, and N.R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366-376
  18. Jordan, D.C. 1984. Family III Rhizobacteae CONN 1938, 321AL. p.234. In N. R. Krieg (ed.), Bergey's manual of systematic bacteriology, 8th ed. volume 1. The Willams & Winkins Co., Baltimore, London
  19. Jørgensen, B.B. 1982. Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature 296, 643-645
  20. Kim, B-S., H.-M. Oh, H.J. Kang, S.-S. Park, and J.S. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14, 205-211
  21. King, G.M. 1988 Patterns of sulfate reduction and the sulfur cycle in a south Carolina salt marsh. Limnol. Oceanogr. 33, 376-390
  22. Kuske, C.R., K.L. Banton, D.L. Adorada, P.C. Stark, K.K. Hill, and P.J. Jackson. 1998. Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl. Environ. Microbiol. 64, 2463-2472
  23. Li, L., C. Kato, and K. Horikoshi. 1999. Microbial diversity in sediments collected from the deepest cold-seep area, the Japan trench. Mar. Biotechnol. 1, 391-400
  24. Li, L., C. Kato, and K. Horikoshi. 1999. Microbial diversity in sediments collected from the deepest cold-seep area, the Japan trench. Mar. Biotechnol. 1, 391-400
  25. Llobet-Brossa, E., R. Rossello-Mora, and R. Amann. 1998. Microbial community composition of Wadden sea sediments as revealed by fluorescence in situ hybridization. Appl. Environ. Microbiol. 64, 2691-2696
  26. Madigan, M.T., J.M. Martinko, and J. Parker. 2000. Brock biology of microorganisms. Prentic Hall. U.S.A
  27. Moeseneder, M.M., J.M. Arrieta, G. Muyzer, C. Winter, and G.J. Herndl. 1999. Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 65, 3518-3525
  28. Ravenschlag, K., K. Sahm, J. Pernthaler, and R. Amann. 1999. High bacterial diversity in permanently cold marine sediments. Appl. Environ. Microbiol. 65, 3982-3989