Vortex behavior in the inertial flow of viscoelastic fluids past a confined cylinder

  • Kim, Ju Min (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Chongyoup (Department of Chemical and Biological Engineering, Korea University) ;
  • Chung, Changkwon (School of Chemical Engineering, Seoul National University) ;
  • Ahn, Kyung Hyun (School of Chemical Engineering, Seoul National University) ;
  • Lee, Seung Jong (School of Chemical Engineering, Seoul National University)
  • Published : 2004.09.01

Abstract

The effect of molecular parameters on the steady vortex behaviors in the inertial viscoelastic flow past a cylinder has been investigated. FENE-CR model was considered as a constitutive equation. A recently developed iterative solution method (Kim et al., (in press)) was found to be successfully applicable to the computation of inertial viscoelastic flows. The high-resolution computations were carried out to understand the detailed flow behaviors based on the efficient iterative solution method armed with ILU(0) type pre-conditioner and BiCGSTAB method. The discrete elastic viscous split stress-G/streamline upwind Petrov Galerkin (DEVSS-G/SUPG) formulation was adopted as a stabilization method. The vortex size decreased as elasticity increases. However, the vortex enhancement was also observed in the case of large extensibility, which means that the vortex behavior is strongly dependent upon the material parameters. The longitudinal gradient of normal stress was found to retard the formation of vortex, whereas the extensional viscosity played a role in the vortex enhancement. The present results are expected to be helpful for understanding the inertial vortex dynamics of viscoelastic fluids in the flow past a confined cylinder.

Keywords

References

  1. Adachi, K., N. Yoshikoka and Sakai, 1977; 1978, An investigation of non-Newtonian flow past a sphere, J. Non-Newt. Fluid Mech. 3, 107-125 https://doi.org/10.1016/0377-0257(77)80044-X
  2. Alves, M.A., F.T. Pinho and P.J. Oliveira, 2001, The flow of Viscoelastic fluids past a cylinder: finite-volume high-resolution methods, J. Non-Newt. Fluid Mech. 97, 207-232 https://doi.org/10.1016/S0377-0257(00)00198-1
  3. Arigo, M.T. and G.H. McKinley, 1998, An experimental investigation of negative wakes behind spheres settling in a Shearthinning viscoelastic fluid, Rheol. Acta 37, 307-327 https://doi.org/10.1007/s003970050118
  4. Baloch, A., P. Townsend and M.F. Webster, 1996, On vortex development in viscoelastic expansion and contraction flows, J. Non-Newt. Fluid Mech. 65, 133-149 https://doi.org/10.1016/0377-0257(96)01470-X
  5. Broadbent, J.M. and B. Mena, 1974, Slow flow of an elasticoviscous fluid past cylinders and spheres, Chem. Engng. J. 8, 11-19 https://doi.org/10.1016/0300-9467(74)80014-6
  6. Brooks, A.N. and T.J.R. Hughes, 1982, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appt. Mech. Eng. 32, 199-259 https://doi.org/10.1016/0045-7825(82)90071-8
  7. Bush, M.B., 1994, On the stagnation flow behind a sphere in a shear-thinning viscoelastic liquid, J. Non-Newt. Fluid Mech. 55, 229-247 https://doi.org/10.1016/0377-0257(94)80072-3
  8. Caola, A.E., Y.L. Joo, R.C. Armstrong and R.A. Brown, 2001, Highly parallel time integration of vicoelastic flows, J. Non-Newt. Fluid Mech. 97, 207-232 https://doi.org/10.1016/S0377-0257(00)00198-1
  9. Chilcott, M.D. and J.M. Rallison, 1988. Creeping flow of dilute polymer solutions past cylinders and spheres, J. Non-Newt. Fluid Mech. 29, 381-432 https://doi.org/10.1016/0377-0257(88)85062-6
  10. Christiansen, R.L., 1985, A laser-Doppler anemometry study of viscoelastic flow past a rotating cylinder, Ind. Eng. Chem. Fundam. 24, 403-408 https://doi.org/10.1021/i100020a001
  11. Cressman, J.R., Q. Bailey and W.I. Goldburg, 2001, Modification of a vortex street by a polymer additive, Phys. Fluids 13, 867-871 https://doi.org/10.1063/1.1347962
  12. Dou, H.-S. and N. Phan-Thien, 2003, Negative wake in the Uniform flow past a cylinder, RheoI. Acta 42, 383-409 https://doi.org/10.1007/s00397-003-0293-z
  13. Dou, H.-S. and N. Phan-Thien, 2004, Criteria of negative wake generation behind a cylinder, Rheol. Acta, 1435-1528 (Online)
  14. Fan, Y. and M.J., Crochet, 1995, High-order finite element methods for steady viscoelastic flows, J. Non-Newt. Fluid Mech. 57, 283-311 https://doi.org/10.1016/0377-0257(94)01338-I
  15. Fan, Y, R.I. Tanner and N. Phan-Thien, 1999, Galerkin/leastsquare finite-element methods for steady viscoelastic flows, J. Non-Newt. Fluid Mech. 84, 233-256 https://doi.org/10.1016/S0377-0257(98)00154-2
  16. Harlen, O.G., 2002, The negative wake behind a sphere Sedimenting through a viscoelastic fluid, J. Non-Newt. Fluid Mech. 108, 411-430 https://doi.org/10.1016/S0377-0257(02)00139-8
  17. Hassager, 0., 1979, Negative wake behind bubbles in non-New-tonian liquids, Nature 279, 402-403 https://doi.org/10.1038/279402a0
  18. Hu, H.H. and D.D. Joseph, 1990, Numerical simulation of vicoelastic flow past a cylinder, J. Non-Newt. Fluid Mech. 37, 347-377 https://doi.org/10.1016/0377-0257(90)90012-Z
  19. Huang, P.Y. and J. Feng, 1995, Wall effects on the flow of Viscoelastic fluids around a circular cylinder, J. Non-Newt. Fluid Mech. 60, 179-198 https://doi.org/10.1016/0377-0257(95)01394-2
  20. James, D.F. and A.J. Acosta, 1970, The laminar flow of dilute polymer solutions around circular cylinders, J. Fluid Mech. 42, 269-288 https://doi.org/10.1017/S0022112070001258
  21. Kim, J.M., C. Kim, K.H. Ahn and S.J. Lee, An efficient iterative solver and high resolution computations of the Oldroyd-B fluid flow past a confined cylinder, J. Non-Newt. Fluid Mech. (in press)
  22. Kim, J.M., C. Kim, C. Chung, K.H. Ahn and S.J. Lee, Comparative studies on the negative wake of FENE-CR fluid in uniform and Poiseuille flows past a cylinder (in preparation)
  23. Koniuta, A., P.M. Adler and J.M. Piau, 1980, Flow of dilute POIymer solutions around circular cylinders, J. Non-Newt. Fluid Mech. 7, 101-106 https://doi.org/10.1016/0377-0257(80)85019-1
  24. Liu, A.W., D.E. Bornside, R.C. Armstrong and R.A. Brown, 1998, Viscoelastic flow of polymer solutions around a Periodic, linear array of cylinders: comparisons of predictions for microstructures and flow fields, J. Non-Newt. Fluid Mech. 77, 153-190 https://doi.org/10.1016/S0377-0257(97)00067-0
  25. Manero, 0. and B. Mena, 1981, On the slow flow of viscoelastic liquids past a circular cylinder, J. Non-Newt. Fluid Mech. 9, 379-387 https://doi.org/10.1016/0377-0257(81)85011-2
  26. Matallah, H., P. Townsend and M.F. Webster, 1998, Recovery and stress-splitting schemes for viscoelastic flows, J. Non-Newt. Fluid Mech. 75, 139-166 https://doi.org/10.1016/S0377-0257(97)00085-2
  27. McKinley, G.H., R.C. Armstrong and R.A. Brown, 1993, The wake instability in viscoelastic flow past confined circular Cylinders, Phi. Trans. R. Soc. Lond. A 344, 265-304 https://doi.org/10.1098/rsta.1993.0091
  28. Mena, B. and B. Caswell, 1974, Slow flow of an elastic-viscous fluid past an immersed body, J. Chem. Engng. 8, 125-134 https://doi.org/10.1016/0300-9467(74)85015-X
  29. Oliveira, P.J., 2001, Method for time-dependent simulations of viscoelastic flows: vortex shedding behind cylinder, J. Non-Newt. Fluid Mech. 101, 113-137 https://doi.org/10.1016/S0377-0257(01)00146-X
  30. Pilate, G. and M.J. Crochet, 1977, Plane flow of a second-order fluid past a submerged boundaries, J. Non-Newt. Fluid Mech. 2 323-34 https://doi.org/10.1016/0377-0257(77)80019-0
  31. Satrape, J.V. and M.J. Crochet, 1994, Numerical simulation of the motion of a sphere in a Boger fluid, J. Non-Newt. Fluid Mech. 55, 91-11 https://doi.org/10.1016/0377-0257(94)80061-8
  32. Smith, M.D., R.C. Armstrong, R.A. Brown and R. Sureshkumar, 2000, Finite element analysis of stability of two-dimensiona viscoelastic flows to three-dimensional perturbations, J. Non-Newt. FIuid Mech. 93, 203-244 https://doi.org/10.1016/S0377-0257(00)00124-5
  33. Sun, J., M.D. Smith, R.C. Armstrong and R.A. Brown, 1999, Finite element method for viscoelastic flows based on the discrete adaptive viscoelastic stress splitting and the discontinuous Galerkin method: DAVSS-G/DG, J. Non-Newt. Fluid Mech. 86, 281-307 https://doi.org/10.1016/S0377-0257(98)00176-1
  34. Townsend, P, 1980, A numerical simulation of Newtonian and viscoelastic flow past stationary and rotating cylinders, J. Non-Newt. Fluid Mech. 6, 219-243 https://doi.org/10.1016/0377-0257(80)80004-8
  35. Ultmann, J.S. and M.M. Denn, 1971, Slow viscoelastic flow past submerged objects, J. Chem. Engng. 2, 81-89 https://doi.org/10.1016/0300-9467(71)80001-1
  36. van der Vorst, H.A., 1992, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems, SIAM J. Sci. and Stat. Comp. 12, 631-634
  37. Wapperom, P. and M.F. Webster, 1999, Simulation for Viscoelastic flow by a finite volume/element method, Comput. Methods AppI. Mech. Engrg. 180, 281-304 https://doi.org/10.1016/S0045-7825(99)00170-X