International Journal of Fuzzy Logic and Intelligent Systems, vol. 4, no. 2, September 2004 pp. 249-253

The Classification of the Software Quality by the Rough Toleramce Class

Wan-Kyoe Choi* and Sung-Joo Lee*

*Department of Computer Engineering, Chosun University

Seoseok-dong, Dong-gu, GwangJu 503-703, Korea

Abstract

When we decide the software quality on the basis of the software mecasurement, the transitive property which is a requirement
for an equivalence relation is not always satisfied. Therefore, we propose a scheme for classifying the software quality that
employs a tolerance relation instead of an equivalence relation. Given the experimental data set, the proposed scheme generates
the tolerant classes for elements in the experiment data set, and generates the tolerant ranges for classifying the software quality
by clustering the means of the tolerance classes. Through the experiment, we showed that the proposed scheme could product
very useful and valid results. That is, it has no problems that we use as the criteria for classifying the software quality the

tolerant ranges generated by the proposed scheme.

Key Words : Rough tolerance class, Software quality

| . Imtroduction

Because the increase of the software cost of the total
system cost, the interest in the software complexity and in the
quality measurement has been augmented, and many measures
have been proposed. The software measurement shows such
important informations as maintainability, understanding and
complexity of the software[4].

When we decide the software quality on the basis of the
software measurement, we do it as the followings.

1. Define such linguistic variables as "it is easy to
maintain" or "it is not easy to maintain".
2. Decide the ranges of the measurement value

corresponding to the linguistic variables.
3. Decide that any software belongs to a specific linguistic
variable according to the measurement value.

When we decide that the structure of any program is more
complex than is necessary because the cyclomatic number of
it is more than 20, we apply the above process to our
decision.

Many researches[1,3,6,7,9,11] suggest the various ranges for
classifying the software quality, but they are based on an
equivalence relation. When we decide the software quality
based on the software measurement, the transitive property
which is a requirement for an equivalence relations is not
always satisfied.

For example, we define two linguistic variables about
LOC(Line Of Codes), "complex" and "non-complex", and
choose the ranges corresponding to two linguistic variables as
"under 20" and "20 or more", respectively.

In this case, we must decide that any program whose LOC

Manuscript received Oct. 31, 2003; revised Aug. 18, 2004.

is 19 is complex and the other program whose LOC is 20 is
non-complex. However, it is more reasonable to decide that
two programs have an similar degree of the complexity rather
than the above decision.

This problem can happen whenever we decide the software
quality by using an equivalence relation. This problem can be
solved by using a tolerance relation \cite{Funa96,Slow94}
instead of an equivalence relation. Therefore, in this paper, we
propose a scheme which generates the tolerant ranges for
classifying the software quality. We shows that we can
generate the tolerant ranges for classifying the software by
applying the tolerance relation to the representation of the
similarity relation of the data.

I1. Tolerance relation

The rough set theory is based on the assumption that we
have initially some knowledge about elements of the universe.
Because with some elements the same information can be
associates, hence two different elements can be indiscernible
in view of the available information. Thus information
indiscernibility relation on its elements. The indiscernibility
relation is the starting point of rough set theory and can be
employed in two ways in order to define basic concepts of
this theory - by defining approximations or the rough

- membership function[14].

The rough set defines two basic operations on sets, the
called R-lower and the R-upper approximation, and defines
respectively by

R,.={x=sUR(x)<=X}
R*={x=s UR(x)\X*¢}

The difference between the wupper and the lower
approximation will be called the R-boundary of X and will be

249

International Journal of Fuzzy Logic and Intelligent Systems, vol. 4, no. 2, September 2004

denoted by BN(X), i.c.
BN p(X)=R"(X)—-R . (X).

This is to mean that if we "see" the set X through the
information , which generates the indiscernibility R, only the
above approximation of X can be "observed", but not the set
X. The boundary region expresses how exactly the set X can
be "seen" due to the indiscernibility X. If boundary region i3
empty set, X can be "obseved" exactly through the
indiscrnibility relation R, and the opposite case the set X can
be "observed" roughly only - due to the indiscmibility R. The
former sets are crisp, whereas the later - are rough, with
respect to indiscrnibility R, or formally set X is R-exact iff
BN p(X)=¢, ie. R*(X)=R,(X). Otherwise the set X is
R-rough.

If data x, y and z satisfy the equivalence relation, they
must satisfy the following properties.

1. The reflexive: .R.
2. The symmetric: R, -> R
3. The transitive: R, and ,R: -> \R;

In case of classifying the data, the transitive property which
is a requirement for an equivalence relations is not always
satisfied. Thus it is not reasonable to represent the similarity
of the data on the basis of an equivalence relation[13]. For
example, let x, y and z the elements of any data set. When x
and y belong to the same linguistic variable and y and z
belong to the same linguistic variable, x and z does not
always belong to the same linguistic variable. This case
always occurs on the boundary area, on which two linguistic
variable are adjacent. Therefore, in case of classifying the
data, we must represent the similarity relation between the
data by a tolerance relation, which satisfy only the reflexive
and the symmetric[2].

When we classify the software quality on the basis of the
measurement value by the software measures, the same
problem happens as classifying the data. This case also does
not always satisfy the transitive. Therefore, the similarity
relation between the software must be represented by the
tolerance relation.

Let U be the universal set of the data, T be the tolerance
relation about any property, and T(x) be a set of the elements
having the tolerance relation with x. Then T{(x) is defined as
the following[2, 13].

T(x)={yeUlx r 3}

In general, a tolerance relation is represented by the
similarity measure, which shows an degree of the similarity
between two elements[5]. The similarity measure can is
variously defined according to the addressed issues, but its
general property is as following: Let the similarity measure
between the property values of two data objects s(x, y). Then,
when s(x, y)>a two data object x and y is said to have the
tolerance relation. a is decided according to the addressed
issues and is used to judge whether two data objects have the

250

tolerance relation or not[13].
The tolerance class 7(xj of any element x;€U is defined
by using the similarity measure as followings.

ox)= {x]ls(x,x Ve, x,x, €U, j#i,ji=1,",n}

U{x ,'}

lll. Scheme for generating the tolerant ranges

We propose a scheme for generating the tolerant ranges for
classifying the software quality. Figure 1 shows our scheme.
When the tolerant classes are given, it generates k tolerant
ranges from them. '

Datas

!

Step 1: Get the tolerance calsses

Step 2: Get the means of the tolerance calsses

Step 3: Get the range by clustering the means]

Fig.1 The process for generating the tolerant ranges

In step 1, we obtains the tolerant classes by using the
similarity measure. The tolerant class for any data object x is
the set of elements whose degree of the similarity to x is
more than a. The number of the tolerant classes generated
from » data objects is n.

In step 2, we calculates the means of the elements which
belong to each tolerant class.

In step 3, we cluster the means from step 2 as k& groups
and obtain the tolerant ranges for classifying the software
quality.

We employ K-Means algorithm proposed by MacQueen.
This algorithm classifies the data objects into k clusters,
calculates the center value from the means of the data objects
which is belonged to the cluster, calculates an distance from
the center values to each data object, and includes each data
objects into the cluster of the most near distance.

By the process of figure 1, we can get k ranges
corresponding to k& linguistic variables which satisfy the
tolerance relation. When we classify programs by using the
measurement value by the software measure, we can decide
what tolerant range they belongs to. That is, a program is
classified into Gi(i=1, 2, ---, k), which is a linguistic variable
for classifying the software.

IV. Experiment and Results

We applied our scheme to the set of the LOC measurement

The Classification of the Software Quality by the Rough Tolerance Class

values about the modules written by C-language and generated
the tolerant ranges for classifying the software quality by
LOC. The modules were obtained from the source code of
Linux kernal and Ansi-C runtime library. The number of
modules were 18404, and the total lines of all modules were
533165.

In general, the similarity measure is defined by using such
distance functions as Hamming distance, Euclidian distance,
etc.. However they cannot be applied when classifying the
program objects on the basis of the measurement values by
the software measures because they cannot reflect the
psychological distance.

For example, when we classify the programs by using
LOC, any program of 10 lines and the other program of 20
lines have the obvious psychological difference, but any
program of 100 lines and the other program of 110 lines does
not have as obvious psychological difference as the former.

Therefore, we define the similarity measure for LOC by
using the fuzzy membership function. Let U be a universal set
for LOC wvalues of the programs and xme be the
pre-determinated maximum value. The similarity measure
between xiEU and x;€U is defined as followings.

s(x ;x5 = plx 2 PNl 5,x)

1
1+(x/""x,') Z(xmax+1—x,)/xmax

wx;,x) =

(G#i,j=1,,n)

When we assume X..—100, figure 2 shows an degree of
the similarity between a program of 10 lines and the others
and between a program of 90 lines and the others. In this
figure, the range of the similar programs to a program of 10
lines and the range of the similar programs to a program of
90 lines are obviously different. Also, larger the value of LOC
is, wider the range of the similarity is.

When the size of a population is more that 20000 and the
confidence interval is 95% and the tolerant error is within
+1%, the optimal sample size is 8213[8].

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

0 10 20 30 40 50 60 70 80 90 100

Figure 2. An degree of the similarity between a program of
10 lines and the others and between a program of 90 lines
and the others

Thus, we randomly retrieved 8213 modules from the
experimental set consisted of 18404 modules, and made them
the experimental group Ta, and made the rest the experimental
group Te. We generated the tolerant ranges for classifying the
software from Ta, applied the generated ranges to Ta and Ts,
and compare the result from Ta with the one from Ts.

The maximum value of LOC of the experimental set was
100. When a was 0.1 and the number of the linguistic
variables were "small program”, "medium program" and "large
program”, we could obtain the tolerant ranges corresponding
to each linguistic variable as like table 1 from Ta.

Table 1. Means of performance

Small program Medium Program Large program

0<LOC<31 26<10C<61 54<LOC< 100

When the tolerant ranges of table 1 was applied to Ts and
Ts, the number of modules belonging to each linguistic
variable in T, and Tg were as like table 2.

Table 2. Means of performance

Experimental Medium
group Small program Program Large program
Ta 5426 2863 1089
Ts 6681 3413 1416

For testing the goodness of the tolerant ranges of table 1,
we compared the characteristics of two experimental groups,
Ta and Ts. That is, we compared the characteristics of the
data set belonged to same linguistic variables by table 1. For
comparing the characteristics, we tested that the classified
data sets statistically had the significant difference by inferring
the difference of the population mean of them.

When inferring the difference of the population mean, two
assumptions are needed. The first is the assumption of a
normal distribution, that is, the distribution of the sample is
approximately normal. The second is the assumption of the
homogeneity of variances, because we can't previously know
the population variance in most cases.

Table 3 shows the descriptive statistics of T4 and Tg, which
are generated by SPSS. We can know that the distribution of
the experimental groups is approximately normal on the basis
of the central limit theorem and of the fact that the skewness
and the Kurtosis are close to 0 in table 3.

Table 3. Descriptive statistics of Ta and Tg

Experimental Mean S.td'. Skewness Kurtosis
group Deviation
Ta 29.1093 | 20.6437 1.269 1.092
Te 29.1127 20.8118 1.269 1.035

251

International Journa! of Fuzzy Logic and Intelligent Systems, vol. 4, no. 2, September 2004

Let ¢% and o% be the population variances of Ta and T,
respectively. We retrieved Levene's statistic in order to test the
0%=d%).
Table 4 shows Levene's statistic when the confidence interval
is 95%. In each case, we cannot reject HO because Levene's
statistics are enough large and p(=significance probability) >
0.05(=significance level)[12].

assumption of the homogeneity of variances(Ho :

Table 4. Test of Homogeneity of Variances

. - Significance
Categories | Levene statistic | dfl df2 probability(p)
Small 2248 1 | 12105 0.134
program
Medium 4,507 1| 6275 0.340
program
Large 0.202 1 | 2503 0.653
program
Table 5. ANOVA Combined Between Groups
. Sum of Mean Significance
£
Categories Squares d Square F probability(p)
Small 35607 | 1 | 35607 | 0719 0.397
program
Mediom |) coag0 | 1 | 166389 | 1.666 0.197
program
Large 202570 | 1 | 202.570 | 1.217 0270
program

Let x% and g% be the population means of Ta and T,
respectively. By the result of table 4, we can know that the
assumption of the homogeneity of variances is satisfied.
Therefore, under the assumption of the homogeneity of
variances, we performed the one-way ANOVA(ANalysis Of
VAriance) in order to test that the classified data sets
statistically had the significant difference(Ho : %= p%). Table
5 shows ANOVA statistics when the confidence interval is
95%. In each case, we cannot reject H, because
p(=significance probability) > 0.05(=significance level)[12].

Therefore, we could conclude that the characteristics of two
experimental groups is not different when classifying two
experimental groups by table~\ref{table: category}.

This shows that our scheme for generating the tolerant
ranges can product very useful and valid results only if the
given assumptions can be satisfied and that the ranges
retrieved by it can be used as the criteria for classifying the
software quality.

V. Conclusion

When we classify the software on the basis of the
measurement values by the software measures, the transitive

252

property which is a requirement for an equivalence relation is
not always satisfied. Therefore, in this paper, we propose a
scheme for classifying the software quality by the tolerance
relation which satisfies the reflexive and the symmetric.

Our scheme obtains the tolerant classes by using the
similarity measure, and calculates the means of the elements
which belong to each tolerant class, and cluster the means as
k groups, and obtains the tolerant ranges for classifying the
software quality.

In experiment, we applied our scheme to LOC values of
18302 modules written by C-language. We obtained the
tolerant ranges from an experimental set, applied the obtained
ranges to two experimental groups, and compared their
characteristics. As result, we could conclude that their
characteristics is not different, that is, the obtained ranges can
be used as the criteria for classifying the software.

Reference

[1] Caldiera, G. and V.R. Basili, "Identifying and Qualifying
Reusable Software Components”, IEEE Computer,
pp.61-70, Feb. 1991,

[2] K.Funakoshi and T.B.Ho, "Information retrieval by rough
tolerance relation", The 4th international Workshop on
rough sets, Fuzzy sets, and Machine Discovery, Tokyo,
Nov. 1996. '

[3] Horst Zuse, Software Complexity-Measures and
Methods, New York: Walter de Gruyter, pp.25-37, 1991.

[4] Karl J. Ottensteion, Linda M. Ottensteion, "The program
dependence graph in a software development
environment”", ACM SIGPLAN Notices, vol.19, no.5,
pp.177-184, May, 1984.

[5] MKretowski and J. Stepniuk, "Selection of objects and
attributes a tolerance rough set approach", ICS Research
Reports, 1994.

[6] Lewis John, Henry Salie, "A Methodology for Integrating
Maintainability Using Software Metrics”, Proceedings:
Conference on Software Maintenance, Miami, Florida,
IEEE, pp.32-39, Oct. 1989.

[7] Lowell J. Arthur, Measuring Programmer Productivity
and Software Quality, New York:John Wiley \& Sons,
pp.138-142, 1985.

[8] D.J.Luck, HG. Wales, D.H.Taylor, Marketing Research,
N.J.:Prentice-Hall, pp.611-612, 1970.

[9] T.McCabe, "A Complexity Measure”, IEEE Trans.SE.,

SE-2, pp.308-320, 1976.

Slowwinski R. and Vanderpooten D. "Similarity
relations as a basic for rough approximations, ICS
Research Reports, 1994.

[11] Szentes J., Gras j., "Some Practical Views of Software
- Complexity metrics and a Universal Measurement
Tool", First Australian Software Engineering Conference,
Canberra, pp.14-16, May 1986. '

[12] John Neter, William Wasserman and Michael H. Kutner,

Applied Linear Statistical Models, IRWIN, Boston, 1990.

Daijin Kim and Chul-Hyun Kim, "Handwritten

[10]

(13]

The Classification of the Software Quality by the Rough Tolerance Class

Numerical Character Recognition Using the Tolerant
Rough Set", Journal of Fuzzy logic and Intelligent
Sytems, vol.9, no.1, pp.113-123, 1999.

Pawlak Z., "Rough Sets-Theoretical Aspects of
Reasoning about Data", Kluwer Academic Publishers,
London, 1991.

(14]

Wan-Kyoo Choi

Wan-Kyoo Choi was bormn October 16.
1964. He received the B.A. degree in
Department of Religious Studies from Seoul
National University, Seoul, Korea, in 1983,
and the M.S. and Ph. D. degrees in
Department of Computer Science f7m
Chosun University, Gwangli, Korea, in
1997 and 200 respectively. He was in the employ of
Kongsung Communication Ltd. from 1992 t01993 and
Han-yang System Ltd. form 1993 to 1995 respectively. Since
2000, he has been a faculty member of the Department of
Computer Science at Kwangju University, where he is
currently a Full Time Lecturer. His research interests are
Software Engineering, Object-oriented System, Fuzzy Sets and
Rough Sets.

Phone 1 +82-62-972-8899
Fax : +82-62-233-6896
E-mail : wankyoo@empal.com

Sung-Joo Lee

Sung-Joo Lee was born October 31. 1943.
He received the B.S. degree in Department
of Physics from Hannam University,
Daejeonl, Korea, in 1970, and the M.S.
degree in Department of Computer Science
form Kwang-Un University, Seoul, Korea,
in 1992, and Ph. D. degree in Department
of Computer Science from DaeGu Catholic University, DaeGu,
Korea, in 1998. Since 1981, he has been a faculty member of
the Department of Computer Science at ChoSun University,
where he is currently a Professor. His research interests are
Software Engineering, Programming Language, Object-oriented
System, Rough Set.

Phone : +82-62-230-7710
Fax 1 +82-62-233-6896
E-mail : sjlee@chosun.ac.kr

253

