Polycyclic Aromatic Hydrocarbon (PAH) Binding to Dissolved Humic Substances (HS): Size Exclusion Effect

  • Hur, Jin (School of the Environment, Clemson University)
  • Published : 2004.09.01

Abstract

Binding mechanisms of polycyclic aromatic hydrocarbons (PAHs) with a purified Aldrich humic acid (PAHA) and its ultrafiltration (UF) size fractions were investigated. Organic carbon normalized binding coefficient ($K_oc$) values were estimated by both a conventional Stern-Volmer fluorescence quenching technique and a modified fluorescence quenching method. Pyrene $K_oc$ values depended on PAHA concentration as well as freely dissolved pyrene concentration. Such nonlinear sorption-type behaviors suggested the existence of specific interactions. Smaller molecular size PAH (naphthalene) exhibited higher $K_oc$ value with medium-size PAHA UF fractions whereas larger size PAH (pyrene) had higher extent of binding with larger PAHA UF fractions. The inconsistent observation for naphthalene versus pyrene was well explained by size exclusion effect, one of the previously suggested specific mechanisms for PAH binding. In general, the extent of pyrene binding increased with lower pH likely due to the neutralization of acidic functional groups in HS and the subsequent increase in hydrophobic HS region. However, pyrene $K_oc$ results with a large UF fraction (>100K Da) corroborated the existence of the size exclusion effect as demonstrated by an increase in $K_oc$ values at a certain higher pH range. The size exclusion effect appears to be effective only for the specific conditions (HS size or pH) that render HS hole st겨ctures to fit a target PAH.

정제된 Aldrich 휴믹산(PAHA)과 한외 여과된 다양한 크기의 PAHA 성분들(PAHA UF fractions)을 이용하여 여러 고리 방향족 탄화수소(PAH)와의 결합 메커니즘을 조사하였다. 유기탄소 결합계수($K_oc$)는 전통적인 Stern-Volmer 형광 소광법과 변형 형광 소광법 두 가지를 이용하여 구하였다. 구해진 Pyrene $K_oc$ 값은 PAHA 농도와 자유 용존 pyrene 농도에 의존하였다. 이러한 비선형 흡착결합 양상은 두 물질간의 흡착성 고유상호작용이 존재한다는 것을 암시하였다. 상대적으로 분자크기가 작은 naphthalene은 중간 크기의 PAHA UF fractions과의 결합에서 높은 $KK_oc$ 값을 보여준 반면 분자 크기의 큰 PAH,즉 pyrene의 경우에는 PAHA UF fractions 크기가 크면 클수록 더 결합이 잘 되었다. 이러한 두 PAH 물질간의 불일치한 크기별 결합양상은 현재까지 제시된 고유 결합 메커니즘들 중의 하나 인 크기별 배제(size exclusion) 효과로 잘 설명되었다. 다양한 pH 조건하에서의 PAH $K_oc$ 실험에서는 일반적으로 pH가 낮아질수록 휴믹산의 산성작용기가 중화되고 그에 따라 휴믹산내의 소수성 영역이 커짐으로 인해 pyrene과 휴믹산과의 결합정도는 커졌다. 그러나 큰 사이즈의 PAHA UF fraction(>100K Da)을 사용한 실험에서는 낮은 pH가 아닌 특정 pH 범위에서 또 하나의 높은 pyrene $KK_oc$ 값을 보여줌으로서 크기별 배제 효과가 존재함을 뚜렷이 보여주었다. 이러한 크기별 배제 효과는 휴믹산의 홀(hole)구조가 PAH 크기에 적합하게 구성되어 있는 조건(휴믹성분 크기 혹은 pH)에서만 작용하는 것으로 보인다.

Keywords

References

  1. Edwards, N., 'Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial - A Review', J. Environ. Qual., 12, pp. 427-441 (1983) https://doi.org/10.2134/jeq1983.00472425001200040001x
  2. Brown, D.G., Knightes, C.D., and Peters, C.A., 'Risk assesment for polycyclic aromatic hydrocarbon NAPLs using component fractions', Environ. Sci. Technol., 33, pp. 4357-4363 (1999) https://doi.org/10.1021/es9902423
  3. Choudhry, G.G., Humic Substances: Structural, Photophysical, Photochemical and Free Radical Aspects and Interactions with Environmental Chemicals, Gordon and Breach Science (1984)
  4. Morel, F.M.M., and Hering, J.G., Principles and Applications of Aquatic Chemistry, New York, John Wiley and Sons (1993)
  5. McCarthy, J.F., and Zachara, J.M., 'Subsurface transport of contaminants', Environ. Sci. Technol., 23, pp. 496-502 (1989)
  6. Gauthier, T.D., Seltz, W.R., and Grant, C.L., 'Effects on structural and compositional variations of dissolved humic materials on pyrene Koc value', Environ. Sci. Technol., 21, pp. 243-248 (1987) https://doi.org/10.1021/es00157a003
  7. Chin, Y.P., Aiken, G.R., and Danielsen, K.M., 'Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticit', Environ. Sci. Technol., 31, pp. 1630-1635 (1997) https://doi.org/10.1021/es960404k
  8. Perminova, I.V., Grechishcheva, N.Y., and Petrosyan, V.S., 'Relationships between structure and binding affinity of humic substances: Relevance of molecular descriptors', Environ. Sci. Technol., 33, pp. 3781-3787 (1999) https://doi.org/10.1021/es990056x
  9. Hur, J., and Schlautman, M.A., 'Using selected operational descriptors to examine the heterogeneity within a bulk humic substance', Environ. Sci. Technol., 37, pp. 880-887 (2003) https://doi.org/10.1021/es0260824
  10. Chiou, C.T., Porter, P.E., and Schmedding, D.W., 'Partition equilibria of nonionic organic compounds between soil organic matter and water', Environ. Sci. Technol., 17, pp. 227-231 (1983) https://doi.org/10.1021/es00110a009
  11. Chiou, C.T., Malcolm, R.L., Brinton, T.I., and Kile, D.E., 'Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids', Environ. Sci. Technol', 20, pp. 502-508 (1986) https://doi.org/10.1021/es00147a010
  12. Wershaw, R.L., 'Model for humus'. Environ. Sci. Technol., 27, pp. 814-816 (1993) https://doi.org/10.1021/es00042a603
  13. Schnitzer, M., and Khan, S.U., Humic Substances in the Environment. New York, Marcel Dekker, Inc. (1972)
  14. Schlautrnan, M.A., and Morgan, J.J., 'Effect of aquatic chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials', Environ. Sci. Technol., 27, pp. 961-969 (1993) https://doi.org/10.1021/es00042a020
  15. Malcolm, R.L., and McCarthy, P., 'Limitations in the use of commercial humic acids in water and soil research', Environ. Sci. Technol., 20, pp. 904-911 (1986) https://doi.org/10.1021/es00151a009
  16. Gauthier, T.D., Shane, E.C., Guerin, W.F., Seitz, W.R., and Grant, C.L., 'Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials', Environ. Sci. Technol., 20, pp. 1162-1166 (1986) https://doi.org/10.1021/es00153a012
  17. Schwarzenbach, R.P., Gschwend, P.M., and Imboden, D.M., Environmental Organic Chemistry, Wiley-Interscience, New York (1993)
  18. Carter, C.W., and Suffet, I.H., 'Binding of DDT to dissolved humic materials', Environ. Sci. Technol., 16, pp. 735-740 (1982) https://doi.org/10.1021/es00105a003
  19. Landrum, P.E., Nihart, S.R., Eadie, B.J., and Gardner, W.S., 'Reverse-phase separation method for determining pollutant binding to Aldrich humic acid and dissolved organic carbon of natural water', Environ. Sci. Technol., 18, pp. 187-192 (1984) https://doi.org/10.1021/es00124a716
  20. Laor, Y., and Rebhun, M., 'Evidence for nonlinear binding of PAHs to dissolved humic acids', Environ. Sci. Technol., 36, pp. 955-961 (2002) https://doi.org/10.1021/es001996g
  21. Young, T.M., and Weber, W.J., 'A distributed reactivity model for sorption by soils and sediments. 3. Effects of diagenetic processes on sorption energetic', Environ. Sci. Technol., 29, pp. 92-97 (1995) https://doi.org/10.1021/es00001a011
  22. Xing, B., and Pignatello, J.J., 'Dual-mode sorption of lowpolarity compounds in glassy poly(vinyl chloride) and soil organic matter', Environ. Sci. Technol., 31, pp. 792-799 (1997) https://doi.org/10.1021/es960481f
  23. Chiou, C.T., and Kile, D.E., 'Deviations from sorption linearity onsoils of polar and nonpolar organic compounds at low relative concentrations', Environ. Sci. Technol., 32, pp. 338-343 (1998) https://doi.org/10.1021/es970608g