Preparation and Characterization of BaTiO3 Powders and Thin films

티탄산바륨 분말과 박막의 제조 및 특성 연구

  • Jung, Miewon (Department of Chemistry, Sungshin Women's University) ;
  • Son, Hyunjin (Department of Chemistry, Sungshin Women's University) ;
  • Lee, Jiyun (Department of Chemistry, Sungshin Women's University) ;
  • Kim, Hyunjung (Department of Chemistry, Sungshin Women's University)
  • Received : 2003.09.09
  • Accepted : 2004.01.19
  • Published : 2004.04.25

Abstract

The $BaTiO_3$ powders and thin films were prepared by an alkoxide modified sol-gel process (polymerization-complex route) using ethylene glycol. The stable starting (Ba-Ti)-mixed metal organic sol was made by addition of acetylacetone. The $BaTiO_3$ powders, which had a particle size of 40~77 nm, were crystallized from an amorphous to a tetragonal phase on annealing at 700 and $1100^{\circ}C$ for 1 h. From FT-IR, solid-state $^{13}C$ CP/MAS NMR spectroscopy and X-ray diffractometry, the trace of the Ba-Ti-oxycarbonate phase first appeared at $400^{\circ}C$. Hydrolyzed sol was spin coated on a quartz wafer at 3500 rpm for 60 s and pyrolyzed at $1100^{\circ}C$ for 1 h. After heat treatment, the coated layer became dense and smooth.

Ethylene glycol의 polymerization-complex route를 통한 졸-겔 합성법으로 안정하고 균일한 barium titanate 분말 및 박막을 제조하였다. 출발 용액으로 킬레이팅 리간드인 acetylacetone을 barium과 titanium 용액에 치환시켜 합성한 복합 산화물 졸 용액을 사용했을 때 박막을 만들 수 있었다. 졸 용액의 입자 분포도는 안정한 gaussian 분포를 보였으며, $1100^{\circ}C$에서 열처리한 겔 분말의 입자 크기는 40~77 nm이었다. 열분석 및 FT-IR, $^{13}C$ CP/MAS NMR 스펙트라와 XRD 결과로부터 (Ba-Ti)-oxycarbonate 중간상을 거쳐 $BaTiO_3$ 분말이 형성됨을 알 수 있었다. Quartz에 스핀 코팅으로 제조한 박막은 치밀하고 균열 없는 미세 조직을 보였다. $1100^{\circ}C$에서 열처리한 박막 표면의 입자 크기는 220 nm였으며 치밀한 입자 성장을 관찰할 수 있었다.

Keywords

References

  1. S. Kumar, G. L. Messing and W. B. White, J. Am. Ceram. Soc., 76, 617-624(1993).
  2. L. C. Klein, 'Sol-Gel Optics: Processing and Applications', pp. 147-58, Kluwer Academic Pub., London, 1994.
  3. G. C. Frye, C. J. Brinker, A. Ricco, S. J. Martin, J. Hilliard, and D. H. Doughty, Mat. Res. Soc., 180, 583-593(1990).
  4. B. Lee, J. Zhang, Thin solid Films, 388, 107-113(2003).
  5. M. P. Pechini, U.S. Pat. 330, 697(1967).
  6. M. Arima, M. Kakihana, Y. Nakamura, M. Yashima and M. Yashimura, J. Am. Ceram. Soc, 79, 2847(1996).
  7. M. Kakihana, M. Arima and Y. Nakamura, Chem. Mater., 11, 438-450(1999). https://doi.org/10.1021/cm9806681
  8. S. J. Lee, M. D. Biegalski and W. M. Kriven, J. Mater. Res., 14, 3001-3006(1999). https://doi.org/10.1557/JMR.1999.0403
  9. P. Duran, F. Capel, D. Gutierrez, J. Tartaj, M. A. Banares and C. Moure, J. Mater. Chem., 11, 1828-1836(2001).
  10. (a) W. H. Stockmayer. J. Chem. Phys., 11, 45-55(1943). (b) M. Henry, C. Sanchez, and J. Livage. J. Non-Cryst. Solids, 89, 206-2171987). (c) C. Gerardin, J. Lambard, and C. Sanchez, J. Sol-Gel Sci. and Tech., 5, 101-114(1995).
  11. G. Yi and M. Sayer, Ceram. Bull., 70, 1173-1179(1991).
  12. K. C. Kajinara and T. Yao, J. Sol-Gel Sci. and Tech., 16, 257-266(1999).
  13. M. W. Jung, Z. Y. Lee and H. J. Son, J. Kor. Ceram. Soc., 39, 252-258(2002).