A Study on Detection of Elastic Wave Using Patch Type Piezo-Polymer Sensor

부착형 고분자 압전센서를 이용한 탄성파 검출 연구

  • Kim, Ki-Bok (Center for Environment & Safety, Korea Research Institute of Standards and Science) ;
  • Yoon, Dong-Jin (Center for Environment & Safety, Korea Research Institute of Standards and Science) ;
  • Kueon, Jae-Hwa (Center for Environment & Safety, Korea Research Institute of Standards and Science) ;
  • Lee, Young-Seop (Center for Environment & Safety, Korea Research Institute of Standards and Science)
  • 김기복 (한국표준과학연구원 환경안전계측센터) ;
  • 윤동진 (한국표준과학연구원 환경안전계측센터) ;
  • 권재화 (한국표준과학연구원 환경안전계측센터) ;
  • 이영섭 (한국표준과학연구원 환경안전계측센터)
  • Published : 2004.06.30

Abstract

Patch type piezo-polymer sensors for smart structures were experimented to detect elastic wave. The pencil lead braking test was performed to analyze the characteristics of patch-type piezo-polymer sensors such as polyvinyliden fluoride (PVDF) and polyvinylidene fluoride trifluorethylene (P(VDF-TrFE)) for several test specimens with various elastic wave velocities and acoustical impedances. The characteristics of the patch-type piezo-polymer sensor were compared with the commercial PZT acoustic emission (AE) sensor. The vacuum grease and epoxy resin were used as a couplant for the acoustic impedance matching between the sensor and specimen. The peak amplitude of elastic wave increased as the diameter of piezo-film and acoustical impedance of the specimen increased. The frequency detection range of the piezo-film sensors decreased with increasing diameter of the piezo-film sensor. The P(VDF-TrFE) sensor was more sensitive than the PVDF sensor.

스마트 구조물에 적합한 탄성파 검출 센서로서 고분자 압전센서를 이용한 부착형 센서에 대한 연구를 수행하였다. PVDF와 P(VDF-TrFE)에 대하여 센서로서의 특성을 평가하였으며 상용화된 PZT 센서와 비교하였다. 음향임피던스가 서로 다른 여러 가지 재료에 고분자 압전센서를 부착하여 연필심 파괴 시 발생하는 탄성파를 검출하여 분석하였다. 센서의 직경이 증가함에 따라 검출 신호의 최대 진폭 값은 증가하였으나 센서의 주파수 검출한계는 감소하는 것으로 나타났다. 시편의 음향임피던스가 감소할수록 검출신호의 최대 진폭 값은 증가하였으며 주로 저주파수의 주파수 성분의 신호에 민감한 것으로 분석되었다. 전반적으로 P(VDF-TrFE) 센서가 PVDF 센서보다 감도 면에서 다소 양호한 것으로 나타났다.

Keywords

References

  1. 윤동진, 정중채, 박휘립, 김기복, 이승석, '응력 확대계수와 음향방출 변수를 이용한 피로균열 거동 연구‘, 비파괴검사학회지, Vol. 20, No. 5, pp. 412-423, (2000)
  2. 김기복, 윤동진, 정중채, 박휘립, 이승석, '주성분 회귀분석 및 인공신경망을 이용한 AE 변수와 응력확대계수와의 상관관계 해석‘, 비파괴검사학회지, Vol. 21, No. 1, pp. 80-90, (2001)
  3. Z. F. Wang, J. Li, W. Ke, Y. S. Zheng, Z. Zhu, and Z. G. Wang, 'Acoustic Emission Monitoring of Fatigue Crack Closure,' Scripta Metallurgica, Vol. 27, No. 12, pp. 1691-1694, (1992) https://doi.org/10.1016/0956-716X(92)90003-W
  4. Z. F. Wang, J. Li, W. Ke, and Z. Zhu, 'Characteristics of Acoustic Emission for A537 Structural Steel During Fatigue Crack Propagation,' Scripta Metallurgica, Vol 27, No. 5, pp. 641-646, (1992)
  5. I. M. Daniel, J. J. Luo, C. G. Sifniotopoulos, and H. J. Chun, 'Acoustic Emission Monitoring of Fatigue Damage in Metals,' Nondestructive Testing and Evaluation, Vol. 14, pp. 71-87, (1998)
  6. 정중채, 윤동진, 박휘립, 김기복, 이승석, '구조용 알루미늄 합금에서의 피로균열 열림 및 닫힘 시 AE 발생특성 연구', 비파괴검사학회지, Vol. 22, No. 2, pp. 155-169, (2002)
  7. H. Kawai, 'The piezoelectricity of poly (vinylidene fluoride),' Journal of Applied Physics, Vol. 8, pp. 975-976, (1969) https://doi.org/10.1143/JJAP.8.975
  8. 김기복, 김병극, 이승석, 'PVDF 및 P(VDF-TrFE)를 이용한 고주파수 수침용 초음파 탐촉자 개발 및 평가', 비파괴검사학회지, Vol. 22. No. 1, pp. 1-8, (2002)
  9. R. Stiffler and E. G. Henneke, II, 'The Application of Polyninylidene Fluoride as an Acoustic Emission Transducer for Fibrous Composite Materials,' Materials Evaluation, Vol. 41, pp. 956-960, (1983)
  10. L. F. Brown and J. L. Mason, 'Disposable PVDF Ultrasonic Transducers for Nondesturctive Testing Applications,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 43, No. 4, pp. 560-568, (1996) https://doi.org/10.1109/58.503716
  11. M. J. Zipparo, K. K. Shung, and T. R. Shrout, 'Piezoceramics for high frequency (20-100 MHz) single element imaging transducers,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 44, No. 5, pp. 1038-1048, (1997) https://doi.org/10.1109/58.655629
  12. F. S. Foster, K. A. Harasiewicz, and M. D. Sherar, 'A History of Medical and Biological Imaging with Polyvinylidene Fluoride (PVDF) Transducers,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 47, No. 6, pp. 1363-1371, (2000) https://doi.org/10.1109/58.883525
  13. L. F. Brown, 'Design Consideration for Piezoelectric Polymer Ultrasound Transducers,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 47, No. 6, pp. 1377-1396, (2000) https://doi.org/10.1109/58.883527
  14. F. S. Foster, L. K. Ryan, and D. Turnbull, 'Characterization of lead zirconate titanate ceramics for use in miniarure high frequency (20-80 MHz) Transducers,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control., Vol. 38, No. 5, pp. 446-453, (2000) https://doi.org/10.1109/58.84289
  15. M. D. Sherar and F. S. T. Foster, 'The design and fabrication of high frequency poly (vinylidene fluoride) transducers,' Ultrason. Imag., Vol. 11, pp. 75-94, (1989) https://doi.org/10.1016/0161-7346(89)90001-1
  16. N. N. Hsu, J. A. Simmons, and S. C. Hardy, 'An approach to acoustic emission signal analysis,' Materials Evaluation, Vol. 35, No 11, pp. 10-106, (1977)
  17. N. N. Hsu and F. R. Breckenridge, 'Characterization and Calibration of Acoustic Emission Sensors,' Materials Evaluation, Vol. 39, No. 1, pp. 60-68, (1983)