Six Color Separation for Reducing Graininess in a Middle Tone Region

중간 계조 영역에서 낟알 무늬 특성을 감소시키기 위한 6색 분리 방법

  • 손창환 (경북대학교 전자전기컴퓨터학부) ;
  • 김윤태 (경북대학교 전자전기컴퓨터학부) ;
  • 조양호 (경북대학교 전자전기컴퓨터학부) ;
  • 하영호 (경북대학교 전자전기컴퓨터학부)
  • Published : 2004.11.01

Abstract

This paper proposes an improved six-color separation reducing the graininess in a middle tone region based on the standard deviation of the lightness and chrominance in S-CIELAB space. Graininess is regarded as visual perception for the fluctuation of the lightness of the light cyan and cyan or light magenta and magenta. In the conventional methods, the granularity is extremely heuristic and inaccurate due to the use of the visual examination score. Accordingly, this paper proposes a method to calculate the objective granularity for six color separation. First, we use the lightness, redness-greenness, and yellowness-blueness of the S-CIELAB space reflecting the spatial-color sensitivity of the human and normalize the sum of the three standard deviations. Finally, we apply the proposed granularity to the six color separation after assigning the granularity to the lookup table and obtain the result reducing the graininess in a middle tone region.

본 논문에서는 4색 잉크에서 6색 잉크로 분리하기 위해 중간 계조 영역에서 낟알 무늬 특성을 감소하기 위한 객관적인 낟알 무늬 값을 계산하는 방법을 제안한다. 낟알 무늬 특성은 light cyan과 cyan, 그리고 light magenta와 magenta가 섞여서 출력되는 중간계조 영역에서 cyan 및 magenta 패턴이 상대적으로 눈에 띄게 되는 현상을 의미한다. 이러한 출력 영상의 낟알 무늬 특성을 향상시키기 위해, 낟알 무늬 특성을 수치적인 값으로 계산하고 이를 6색 분리 과정에 적용하는 방법을 제안하였다. 낟알 무늬 특성은 인간 시각의 공간 칼라 민감도를 반영하는 S-CIELAB 공간 좌표계를 사용하여, 밝기와 색도의 표준편차를 구하고 정규화 과정을 통해서 결정한다. 객관적인 낟알 무늬 특성을 중간 계조 영역의 색 분리 과정에 적용함으로써, 좀 더 부드럽고 낟알 무늬가 줄어드는 향상된 결과가 나타났다.

Keywords

References

  1. A. U. Agra, G. J. Dispoto, I. Tastl, K. W. Koh, and N. D. Venkata, 'Photo quality printing on a digital press,' IS&T's NIP18: 2002 International Conference on Digital Printing Technologies, San Diego, U.S.A., pp. 87-90, Sep. 2002
  2. P. C. Hung, 'Colorimetric characterization beyond three colorants,' Proceedings of SPIE Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts, San Jose, U.S.A., vol. 3963, pp. 196-207, Jan. 2000 https://doi.org/10.1117/12.373398
  3. A. U. Agra, 'Model based color separation for CMYKcm printing,' Ninth Color Imaging Conference: Color Science and Engineering, Scottsdale, U.S.A., pp. 298-302, Nov. 2001
  4. Y. X. Noyes, J. Y. Hardegerg, and A. M. Moskalev, 'Linearization curve generation for CcMmYK printing,' Eighth Color Imaging Conference: Color Science and Engineering, Scottsdale, U.S.A., pp. 247-251, Nov. 2000
  5. X. C. Huang and B. D. Nystrom, 'Multilevel ink mixing device and method using diluted and saturated color inks for inkjet printers,' U.S. patent, no. 6,172,693, Jan. 2001
  6. H. R. Kang, Color technology for electronic imaging devices, SPIE, Bellingham, WA, 1997
  7. X. M. Zhang and B. A. Wandell, 'A spatial extension to CIELAB for digital color image reproduction,' Society for Information Display Symposium Technical Digest, vol. 27, pp. 731-734, 1996
  8. J. Y. Hardeberg, Acquisition and reproduction of color image: colorimetric and multispectral approaches, Dissertation.com, USA, 2001
  9. C. S. Lee, C. H. Lee, and Y. H. Ha, 'Parametric gamut mapping algorithm using variable anchor points,' Journal of Imaging Science and Technology, vol. 44, no. 1, pp. 68-73, Jan./Feb. 2000
  10. H. Zeng, 'Gray component replacement by direct colorimetric mapping,' Proceedings of SPIE Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts, San Jose, U.S.A., vol. 3963, pp. 317-322, Jan. 2000 https://doi.org/10.1117/12.373411
  11. R. Ulicheney, Digital halftoning, The MIT press, 1993
  12. H. S. Chen, M. Omamiuda, and H Kotera, 'Gamma -compression gamut mapping method based on the concept of image to device,' Journal of Imaging Science and Technology, vol. 45, no. 2, pp. 141-151, Mar./Apr. 2001