DOI QR코드

DOI QR Code

Hyperproduction of L-Threonine by Adding Sodium Citrate as Carbon Source in Transformed Escherichia coli Mutant.

형질전환된 Escherichia coli변이주에서 Sodium citrate를 이용한 고농도 L-Threonine 생산

  • 이만효 (경남대학교 식품생명공학부) ;
  • 김병진 (경남대학교 식품생명공학부) ;
  • 정월규 (전북대학교 생물공정공학과) ;
  • 최선욱 (경남대학교 식품생명공학부) ;
  • 박해룡 (경남대학교 식품생명공학부) ;
  • 황용일 (경남대학교 식품생명공학부)
  • Published : 2004.10.01

Abstract

The efficient fermentative production of L-threonine fermentation was achieved by using Escherichia coli MT201, transformed a plasmid carrying pyruvate carboxylase gene. It is an attempt to supply oxaloacetate to the L-threonine biosynthetic pathway. In order to improve the L-threonine productivity of E. coli MT201, a plasmid pPYC which is an expression vector of the pyruvate carboxylase gene of Coryne-bacterium glutamicum, was introduced. When E. coli MT/pPYC was incubated with medium containing only glucose as a carbon source, both the cell growth and L-threonine production were reduced, compared to the results from fermentation of E. coli MT201. In order to circumvent this effect, we attempted the addition of a mixed carbon source, composed of glucose and sodium citrate at a ratio of 1.5:3.5. It was shown that L-threonine production and cell growth (OD660) with E. coli MT/pPYC reached up to 75.7 g/l and 48, respectively, at incubation for 75 hr under fed-batch fermentation conditions. It is assumed that overproduction of L-threonine by anaplerotic pathway leads unbalance of TCA cycle and sodium citrate might playa role to recover normal TCA cycle.

유용성이 확보된 L-threonine의 효율적인 발효생산을 위하여 생산균주 E. coli MT201를 유전자재조합을 통하여 개량하고 적절한 탄소원을 발굴하여 전체적인 생산량 증대를 도모하였다. 먼저, 5 liter발효조에서 유가식 배양을 통하여 생산균주 E. coli MT201이 균체량이 52($OD_{660}$)일때 57 g/1의 생산량을 보이는 것을 확인하였다. L-Threonine의 생산성 향상을 위하여 균체 내에서 생합성 전구물질인 oxaloacetate를 충분하게 공급하기 위해 C. glutamicum 유래의 pyruvate carboxylase의 유전자를 plasmid pPYC의 형태로 E. coli MT201에 도입하였다(E. coli MT/PYC). 그렇지만 E. coli MT/PYC을 배양한 결과로부터 E. coli MT201와 비교할 때 균체증식 및 생산량이 모두 감소하는 경향을 보였으며, 이를 해결하기 위하여 플라스크배양을 통하여 포도당과 sodium citrate를 1.5:3.5의 비율로 배지 중에 첨가하였을 때 이들 문제가 개선되는 것을 관찰하였다. 상기 비율의 탄소원 조건하에서 5liter 발효조를 이용한 유가식 배양에서 배양 75시간째에 L-threonine의 생산량 및 균체량($OD_{660}$)이 각각 75.7 g/l와 48로 효율적으로 향상되는 것을 알 수 있었다. 이는 과도한 anaplerosis에 의한 TCA 회로의 불균형을 중간산물인 citric acid를 sodium citrate의 형태로 공급함으로써 E. coli MT/PYC에서 균체증식이 정상화됨을 의미한다.

Keywords

References

  1. Farf$\'a$n, M. J. and I. S. Calder$\'o$n. 2000. Enrichment of threonine content in Saccharomyces cerevisiae by pathway engineering. Enzyme Microbiol. Tech. 26, 763-770. https://doi.org/10.1016/S0141-0229(00)00169-1
  2. Herrmann, K. M. and R. L. Somerville. 1983. Amino acids biosynthesis and genetic regulation. pp. 147-187, Addison- Wesley Publishing Company Inc., Massachusetts
  3. Kase, H. and K. Nakayama. 1972. Production of L- threonine by analog-resistant mutants. Agric. Biol. Chem. 36, 1611-1621 https://doi.org/10.1271/bbb1961.36.1611
  4. Koffas, M. A. G., R. Ramamoorthi, W. A. Pine, A. J. Sinskey and G. Stephanopoulos. 1998. Sequence of the Corynebacterium glutamicum pyruvate carboxylase gene. Appl. Microbiol. Biotechnol. 50, 346-352 https://doi.org/10.1007/s002530051302
  5. Lee, J. H., J. W. Oh, H. H. Lee and H. H. Hyun. 1991. Production of L-threonine by auxotrophs and analogue resistant mutants of Escherichia coli. Kor. J. Appl. Microbiol. Biotechnol. 19(6), 583-587
  6. Lee, J. H., J. W. Oh, K. S. Noh, H. H. Lee, and J. H. Lee. 1992. Construction of L-threonine overproducing Escherichia coli by cloning of the threonine operon. J. Microbiol. Biotechnol. 2(4), 243-247
  7. Lee, M. H., H. W. Lee, B. J. Kim, C. S. Kim, J. K. Jung, and Y. I. Hwang. 2004. High production of L-threonine using controlled feeding of L-methionine and phosphate by Escherichia coli mutant. Kor. J. Microbiol. Biotechnol. 32(2), 149-153
  8. Leuchtenberger, W. 1996. Amino acids. Technical production and use, pp. 465-502, In M. Roehr (ed.), Biotechnology. VCH, Weinheim. Germany
  9. Miwa, K., S. Nakamori, K. Sano and H. Momose. 1984. Stability of recombinant carrying the threonine operon in Escherichia coli. Agr. Biol. Chem. 48, 2233-2237 https://doi.org/10.1271/bbb1961.48.2233
  10. Miwa, K., T. Tsuchida, O. Kurahashi, S. Nakamori, K. Sano and H. Momose. 1983. Construction of L-threonine overproducing strains of Escherichia coli K-12 using recombinant DNA techniques. Agr. Biol. Chem. 47, 2329-2334 https://doi.org/10.1271/bbb1961.47.2329
  11. Okamoto, K., K. Kino and M. Ikeda. 1997. Hyperproduction of L-threonine by an Escherichia coli mutant with impaired L-throenine uptake. Biosci. Biotech. Biochem. 61, 1877-1882 https://doi.org/10.1271/bbb.61.1877
  12. Peters-Wendish, P. G., C. Kreuter, J. Kalinowaski, M. Patek, H. Sahm and J. E. Bernhard. 1998. Pyruvate carboxylase from Corynebacterium glutamicum: Characterization, expression and inactivation of the pyc gene. Microbiology 114, 915-927 https://doi.org/10.1099/00221287-144-4-915
  13. Peters-Wendisch, P. G., V. F. Wendisch, S. Paul, B. J. Eikmanns and H. Sahm. 1997. Pyruvate carboxylase as an anaplerotic enzyme in Corynebacterium glutamicum. Microbi-ology 143, 1095-1103 https://doi.org/10.1099/00221287-143-4-1095
  14. Shiio, I. and S. Nakamori. 1969. Microbial production of L-threonine. Part Ⅰ. Production by Escherichia coli mutant resistant to $\alpha$-amino-$\beta$-hydroxyvaleric acid. Agr. Biol. Chem. 33(8), 1152-1160 https://doi.org/10.1271/bbb1961.33.1152