DOI QR코드

DOI QR Code

산성 전해수가 콩나물의 생육에 미치는 영향

Effect of Electrolyzed Acidic Water on the Growth of Soybean Sprout.

  • 윤동준 (경북대학교 농업개발대학원) ;
  • 이정동 (경북대학교 식물생명과학부) ;
  • 강동진 (경북대학교 농업과학기술연구소) ;
  • 박순기 (경북대학교 식물생명과학부) ;
  • 황영현 (경북대학교 식물생명과학부)
  • 발행 : 2004.10.01

초록

산성 전해수를 이용하여 콩나물을 생육시켰을 때 콩나물 관련 주요형질들의 반응을 조사하여 콩나물 재배수로 사용 가능성을 검토하였다. 산성전해수로 생육시킨 콩나물은 전체길이,뿌리길이, 하배축 길이 등이 짧아졌고, 하배축의 두께, 콩나물 개체당 무게 등은 늘어 난 것으로 평가되었다. 하배축 횡단면 관찰에서 산성전해수에서 자란 콩나물의 하배축내 세포가 대조구에 비해 커져 하배축의 두께가 두꺼워진 것으로 평가되었으며, 생육일수별 콩나물 주요 특성에서 콩나물 전체길이는 산성전해수에서 자란 콩나물의 전체 길이가 더 짧았으며, 수돗물에서 자란 콩나물은 생육 후 5일째 이후에 급격히 길이 신장을 하였으나 전해수에서 자란 콩나물은 길이 신장은 거의 변화가 없었다. 하배축의 신장은 콩나물 전체길이와 같은 경향을 보였는데 생육 후 5일째에는 품종간 신장의 차이가 관찰되었다. 뿌리 생육 특성은 전해수에서 생육시킨 콩나물은 생육 4일째에서 11일째까지 뿌리 길이의 차이가 없었으나 수돗물에서 생육시킨 콩나물의 뿌리길이는 생육일수가 증가함에 따라 급격하게 신장을 보였다. 하배축의 두께는 산성전해수에서 생육시킨 콩나물이 수돗물에서 생육시킨 콩나물보다 더 두꺼웠는데 생육 후 5일째까지 두께가 증가하다가 생육 후 5일째 이후부터 다소 감소하였으며, 콩나물 자엽의 무게는 산성전해수에서 생육시킨 콩나물의 자엽무게가 생육일수가 증가할수록 현저하게 증가하였으나 수돗물에서 생육시킨 콩나물은 생육 후 7일째까지는 거의 변화를 보이지 않았다. 콩나물의 생체중은 전해수에서 생육시킨 콩나물이 재배 후 7일 까지는 무거웠으나 11일째는 산성전해수와 수돗물에서 자른 콩나물의 생체중이 거의 비슷하였다.

To investigate the effect of the electrolyzed acidic water for soybean sprouts growth, the responses of characteristics of soybean sprouts were evaluated. Soybean sprouts grown by the electrolyzed acidic water showed shorter length in total body, root, and hypocotyl, etc. but they were evaluated to be increased in hypocotyl diameter and weight per sprout. Total length of soybean sprouts grown for 5 days by electrolyzed acidic water were much shorter than those by tap water. Soybean sprouts grown by tap water showed rapid growth in length even after 5 days but no more growth in length for those grown by electrolyzed acidic water. The growth of hypocotyl showed the same tendency as total length. No difference in root length among the soybean sprouts grown for 4 ~ 11 days by electrolyzed acidic water while those grown by tap water showed continuous rapid growth in length. The diameter of hypocotyl was thicker in those grown by electrolyzed acidic water than those grown by tap water and increased up 5 days. The weight of cotyledon grown by electrolyzed acidic water showed the proportional increase to the growing days but those grown by tap water showed no increase in hypocotyl weight up to 7 days, but a little bit increase after 11 days with the growth of new buds. The fresh weight per sprout was higher in those grown by electrolyzed acidic water until 7 days than tap water but it was the same weight in 11 days cultivation. The electrolyzed acidic water effected on shortening of hypocotyl and root length, thickening of hypocotyl diameter, and enlarging of cotyledon during soybean sprout cultivation.

키워드

참고문헌

  1. Ahlrichs, J. L., Karr, M. C., Baligar, V. C., and Wright, R. T. 1990. Rapid bioassay of aluminum toxicity in soil. Plant Soil. 122, 279-286 https://doi.org/10.1007/BF02851986
  2. Buck, J. W., Van Iersel, M. W., Oetting, R., and Hung, Y. C. 2002. In vitro fungicidal activity of acidic electrolyzed oxidizing water. Plant Dis. 86, 278-281 https://doi.org/10.1094/PDIS.2002.86.3.278
  3. Bushamuka, V. N., and Zobel, R. W. 1998. Maize and soybean tap, basal, and lateral root responses to a stratified acid, aluminum-toxic soil. Crop Sci. 38, 416-421 https://doi.org/10.2135/cropsci1998.0011183X003800020024x
  4. Foy, C. D. 1987. Acid soil tolerances of two wheat cultivars related to soil pH, KCl extractable aluminum and aluminum saturation. J. Plant Nutr. 10, 609-623 https://doi.org/10.1080/01904168709363595
  5. Han, S. S., Y. S. Rim, and J. H. Jeong. 1996. Growth characteristics and germanium absorption of soybean sprout cultured with the aqueous solution of organogermanium. J. Korean Soc. Agric. Chem. Biotechnol. 39, 39-43
  6. Johnson, J. P., Carver, B. F. Jr., and Baligar, V. C. 1997. Expression of aluminum tolerance transferred from atlas 66 to hard winter wheat. Crop Sci. 37, 103-108 https://doi.org/10.2135/cropsci1997.0011183X003700010016x
  7. Kang, C, K. and Y. K. Kim. 1997. Effect of plant growth regulators on growth of soybean sprout. J. Kor. Sco. Hort. Sci. 38, 103-106
  8. Kang, C. K., D. W. Yun, Y. L. Kim and T. H. Choe. 1996. Determination of minimum concentration and dipping time for inhibition of lateral root and growth stimulation in soybean sprouts as influenced by benzyladenine. J. Kor. Hort. Sci. 37, 773-776
  9. Kang, C. K., J. M. Lee and H. Saka. 1989. Effect of plant growth regulator treatments on the growth and lateral root formation in soybean sprouts. I. Effect of plant growth regulator treatments on the growth in soybean sprouts. Korean J. Weed Sci. 9, 56-68
  10. Kang, J. Y., S. C. Kang and S. Park. 2000. Effect of filtrate of loess suspension on growth and quality of soybean sprouts. J. Korean Soc. Agric. Chem. Biotechnol. 43, 266- 270
  11. Kim, C., Hung, C., and Brackett. R. E., 2000. Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. Intl. J. Food Microbiol. 61, 199-207 https://doi.org/10.1016/S0168-1605(00)00405-0
  12. Kiura, H., Sano, K., Morimatsu, S., Nakano, T., Morita, C., Yamaguchi, M., Maeda. T., and Katsuoka, Y. 2002. Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration. J. Microbiol. Methods 49, 285-293 https://doi.org/10.1016/S0167-7012(01)00385-2
  13. Koseki, S., and Itoh, K. 2000a. Fundamental properties of electrolyzed water. Jpn. Food Sci. 47, 390-393 https://doi.org/10.3136/nskkk.47.390
  14. Koseki, S., and Itoh, K. 2000b. The effect of available chlorine concentration on the disinfecting potential of acidic electrolyzed water for shredded vegetables. Jpn. Food Sci. 47, 888-898 https://doi.org/10.3136/nskkk.47.888
  15. Koseki, S., Yoshida, K., Isobe, S., and Itoh, K. 2001. Decontamination of lettuce using acidic electrolyzed water. J. Food Prot. 64, 652-658
  16. Lee, J. H., T. R. Kwon, J. D. Moon and J. T. Lee. 1998. Effect of acidic electrolyte water on growth and infection of Phytophthora capsici.. Korean J. Plant Pathol. 14, 440-444
  17. Moustakas, M., Ouzounidou, G. Lannoye, R. 1995. Aluminum effects on photosynthesis and elemental uptake in an aluminum-tolerant and non-tolerant wheat cultivar. J. Plant Nutr. 18, 669-683 https://doi.org/10.1080/01904169509364930
  18. Nakamura, M., H. Takahashi, T. Tabuchi, K. Kanahama and A. Karasawa. 2002. Method of cell and tissue experiments. pp. 42-64. In; Hashiba, T. and K. Kanahama (eds.), A manual of experiments for agriculture. Soft Science Publications, Tokyo
  19. Park, G. H. and I. Y. Baek. 2000. Effect of ozone water on germination and growth of soybean sprout. Korea Soybean Digest. 17, 20-26
  20. Venkitanarayanan, K. S., Ezeike, G. O., Hung, Y. C., and Doyle, M. P. 1999. Efficacy of electrolyzed oxidizing water for inactivation Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes. Appl. Environ. Microbiol. 65, 4276-4279

피인용 문헌

  1. A simple method for evaluation of sprout characters in soybean vol.153, pp.1-2, 2006, https://doi.org/10.1007/s10681-006-9252-y
  2. Change of Hydroponic Components by Plasma Treatment vol.21, pp.3, 2012, https://doi.org/10.5322/JES.2012.21.3.363
  3. Metabolic alterations of lutein, β-carotene and chlorophyll a during germination of two soybean sprout varieties vol.141, pp.3, 2013, https://doi.org/10.1016/j.foodchem.2013.06.006
  4. Metabolic association of lipophilic pigments in the organs of soybean sprouts vol.24, pp.3, 2015, https://doi.org/10.1007/s10068-015-0111-2