DOI QR코드

DOI QR Code

Optimization of Cyclodextrin Glucanotransferase Immobilization on Amberlite IRA-900

Amberlite IRA-900을 이용한 cyclodextrin glucotransferase의 최적 고정화

  • Seo, Hyo-Jin (Dept. of Biotechnology and Bioengineering, Pukyong National University) ;
  • Jung, Il-Hyong (Dept. of Biotechnology and Bioengineering, Pukyong National University) ;
  • Nam, Soo-Wan (Dept. of Biotechnology and Bioengineering, Pukyong National University) ;
  • Kim, Byung-Woo (Dept. of Biotechnology and Bioengineering, Pukyong National University) ;
  • Kim, Sung-Koo (Dept. of Biotechnology and Bioengineering, Pukyong National University)
  • Published : 2004.10.01

Abstract

Cyclodextrin glucanotransferase (CGTase) produced by Bacillus subtilis NAl/pKBl was used for the production of cyclodextrin (CD). The enzyme was purified by ion exchange and gel filtration chromatography. The purified enzyme exhibited its maximum activity in the pH range of 6.0 to 7.0 and temperature range of 60 to $70^{\circ}C$. Immobilization of purified CGTase was carried out with various immobilization matrices. Amberlite IRA-900, a strong basic anion exchange resin, showed the highest immobilization ability (38 units per gram resin). Optimal pH and temperature for enzymatic reaction of the immobilized CGTase were pH 6.0 and 60t. The activity of immobilized CGTase maintained more than a month and could be reused for a month in a continuous enzyme reactor for the production of CD.

Bacillus subtilis NAl/pKBl으로부터 생산된 cyclodextrin glucanotransferase (CGTase)는 cyclodextrin (CD)의 생산에 이용되었으며, 이에 사용된 CGTase는 ion-exchange chromatography와 gel filtration chromatography에 의해 정제되었다. 정제된 CGTase는 pH 6.0-7.0 범위, 60-$70^{\circ}C$에서 최대 활성을 나타내었으며, 다양한 이온결합성 고정화 담체를 이용하여 정제 효소의 고정화를 실시한 결과, 강염기성 음이온교환수지인 Amberlite IRA-900이 가장 우수한 고정화 효율을 나타내었다. 고정화된 효소는 pH 6.0, $60^{\circ}C$에서 최대 활성을 나타내었고, 그 활성이 약 1개월간 유지되어 cyclodextrin을 생산하기 위한 연속반응기내에서 장기간 사용이 가능함을 알 수 있었다.

Keywords

References

  1. Fujiwara, S., H. Kakihara, B. W. Kim, A. Leujeune, M. Kanemoto, K. Sakaguchi, and T. Imanaka. 1992. Cyclization characteristics of cyclodextrin glucanotransferase are conferred by the $NH_2$-terminal region of the enzyme. Appl. Environ. Microbiol. 58, 4016-4025
  2. Gawande, B. N., R. K. Singh, A. K. Chauhan, A. Goel, and A. Y. Patkar. 1998. Optimization of cyclomaltodextrin glucanotransferase production from Bacillus firmus. Enz. Microbiol. Technol. 22, 288-291 https://doi.org/10.1016/S0141-0229(97)00184-1
  3. In, M. J., Kim, D. C., Chae, H. J., Choi, K. S. and Kim, M. H. 1997. Immobilization of cyclodextrin glucanotransferase and its reaction characterisitics regarding transglucosylated stevioside production. Kor. J. Appl. Microbiol. Biotechnol. 25, 305-310
  4. Jeon, S. J., Nam, S. W., Yun, J. W., Song, S. K. and Kim, B. W. 1998. Effect of C- or D- domain deletion on enzymatic properties of cyclodextrin glucanotransfer- ase from Bacillus stearothermophilus NO2. J. Microbiol. Biotechnol. 8(2), 152-157
  5. Kang, H. J., Chae, K. S. and Sunwoo, Y. I. 1995. Production of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. C-21. Kor. J. Food Nutr. 8, 253-261
  6. Kim, J. H., Hong, S. S. and Lee, H. S. 2001. Recovery of cyclodextrin glucanotransferase by adsorption to starch. Kor. J. Biotechnol. Bioeng. 16, 128-132
  7. Kim, P. S., Shin, H. D., Park, J. K. and Lee, Y. H. 2000. Immobilization of cyclodextrin glucanotransferase on Amberlite IRA-900 for biosynthesis of transglycosylated xylitol. Biotechnol. Bioprocess Eng. 5, 174-180 https://doi.org/10.1007/BF02936590
  8. Lee, M. S., Shin, H. D., Kim, T. K. and Lee, Y. H. 2004. Purification of α-cyclodextrin glucanotransferase excreted from thermophilic Geobacillus thermosacchalytycus and characterization of transglycosylation reaction of glycoside. Kor. J. Microbiol. Biotechnol. 32(1), 29-36
  9. Lee, Y. H., Lee, S. H. and Shin, H. D. 1991. Performance of column type bioreactor packed with immobilized cyclodextrin glucacnotransferase for cyclodextrin production. J. Microbiol. Biotechnol. 1(1), 63-69
  10. Mohamed, A. A., Reyad, M. R., Ahmed, F. A. 2000. Biosynthesis of cyclodextrin glucanotransferase by immobilized Bacillus amyloliquefaciens in batch and continuous cultures. Biochem. Eng. J. 5, 1-9 https://doi.org/10.1016/S1369-703X(99)00030-3
  11. Park, C. S., Woo, E. J., Kuk, S. U., Seo, B. C., Park, K. H. and Lim., H. 1992. Purification and characterization of cyclodextrin glucanotransferase from Bacillus sp. E1. Kor. J. Microbiol. Biotechnol. 20, 156-163
  12. Park, D. C., Kim, T. K. and Lee, Y. H. 1998. Characteristics of transglycosylation reaction of cyclodextrin glucanotransferase in the heterogeneous enzyme reaction system using extrusion starch as a glucosyl donor. Enz. Microbiol. Technol. 22, 217-222 https://doi.org/10.1016/S0141-0229(97)00183-X
  13. Siana, H. K., Saidb, M., Hassanb, O., Kamaruddinc, K., Ismaila, A. F., Rahmana, R. A. Mahmooda, N. A. N., and Illiasa, R. 2004. Purification and characterization of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. G1. Process Biochemistry, in press https://doi.org/10.1016/j.procbio.2004.03.018
  14. Sung, K. H., Kim, S. K., Jang, K. L. and Jeon, H. K. 2003. Immobilization of cyclodextrin glucanotransferase for production of 2-O-$\alpha$-D-glucopyranosyl L-ascorbic acid. Kor. J. Microbiol. Biotechnol. 31(4), 368-376
  15. Qi, Q., She, X., Endo T. and Immermann, W. 2004. Effect of the reaction temperature on the transglycosylation reactions catalyzed by the cyclodextrin glucanotransferase from Bacillus macerans for the synthesis of large-ring cyclodextrins Tetrahedron, 60(3), 799-806 https://doi.org/10.1016/j.tet.2003.10.112
  16. Tanaka, M., Muto, N. and Itaru, Y. 1991. Characterization of Bacillus stearothermophilus cyclodextrin glucanotransferase in ascorbic 2-O-$\alpha$-glucoside formation. Biochim. Biophys. Acta. 1078, 127-132 https://doi.org/10.1016/0167-4838(91)99000-1
  17. Tonkova, A. 1998. Bacterial cyclodextrin glucanotransferase. Enz. Microbiol. Technol. 22, 678-686 https://doi.org/10.1016/S0141-0229(97)00263-9