DOI QR코드

DOI QR Code

a-Tropomyosin의 아미노 말단 구조가 기능에 미치는 영향

Functions of a-Tropomyosin Are Mainly Dependent upon the Local Structures of the Amino Terminus

  • 발행 : 2004.10.01

초록

a-Tropomyosin (TM)의 아미노(N) 말단 구조의 중요성을 확인하기 위하여 N 말단에 알라닌 아미노산 잔기 하나를 첨가한 재조합 Ala-TM을 제조하였다. Ala-TM을 대장균에서 대량발현 시켜 정제한 후, N 말단이 아세틸화된 근육TM및 N말단에 알라닌-세린 잔기를 첨가한 AS-TM과 N말단이 비아세틸화된 TM등의 재조합 TM과 기능을 비교하였다. Ala-TM은 비아세틸화된 TM보다 액틴친화력이 현저히 증가했으나, 근육 및 AS-TM 보다는 약 3배정도 약하게 액틴에 결합하였다. 근육 TM, AS-TM,그리고 Ala-TM모두가 myosin 51의 농도가 낮을 때 ATPase 활성을 억제하였고 농도가 높을 때 촉진하였으나, 억제와 촉진의 정도는 서로 차이가 있었으며 비아세틸화된 TM은 억제하지 않았다. 이들 결과는 N말단 구조가 TM의 기능을 결정하는 중요한 요소임을 나타내며 TM의 온전한 기능을 위해서는 아세틸화된 N 말단이 필요하다는 것을 의미한다.

It has been previously reported that unacetylated a-tropomyosin(TM) produced in E. coli failed to bind to actin while acetylated muscle TM and Ala-Ser dipeptide fusion TM (AS-TM) bound well to actin. In order to determine the structural requirement of the amino terminus for high actin affinity, a recombinant tropomyosin (Ala-TM) that a single Ala residue was added to the amino terminus of Ala-TM was constructed, overexpressed, and purified from E. coli. Actin affinity of Ala-TM was 2.3$\times$$10^{6}$$M^{-1}$, whereas that of unacetylated TM was considerably lower than 0.1$\times$$10^{-6}$$M^{-1}$ indicating that addition of a single Ala residue to the amino terminus drastically increased, at least twenty times, actin affinity of TM. Ala-TM, however, bound to actin about three times weaker than acetylated TM and AS- TM, implying that the addition of an Ala residue was insufficient for complete restoration of high actin affinity. While Ala-TM, AS-TM, and muscle TM showed inhibition and activation of actomyosin Sl ATPase activity depending on myosin Sl concentration, the degree of inhibition and activation was different from each other. AS-TM exhibited the greatest inhibition of the ATPase at low Sl concentration, whereas the greatest activation of the ATPase was observed with muscle TM. These results, together with previous findings, strongly suggested that local structure of the amino terminus is the crucial functional determinant of TM.

키워드

참고문헌

  1. Bradford, M. M. 1976. A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  2. Bharadwaj, S., S. E. Hitchcock-DeGregori, A. Thorburn, and G. L. Prasad. 2004. N-terminus is essential for tropomyosin functions. J. Biol. Chem. 279, 14039-14048 https://doi.org/10.1074/jbc.M310934200
  3. Cho, Y. J. 2000. The carboxyl terminal amino acid residues glutamate276- threonine277 are important for actin affinity of the unacetylated smooth $\alpha$-tropomyosin. J. Biochem. Mol. Biol. 33, 531-536
  4. Cho, Y. J. and S. E. Hitchcock-DeGregori. 1991. Relationship between alternatively spliced exons and functional domains in tropomyosin. Proc. Natl. Acad. Sci. USA. 88, 10153-10157 https://doi.org/10.1073/pnas.88.22.10153
  5. Cho, Y. J., J. Liu and S. E. Hitchcock-DeGregori. 1990. The amino terminus of muscle tropomyosin is a major determinant for function. J. Biol. Chem. 265, 538-545
  6. Greenfield N. J, T. Palm and S. E. Hitchcock-DeGregori. 2002. Structure and interactions of the carboxyl terminus of striated muscle alpha-tropomyosin: it is important to be flexible. Biophys J. 83, 2754-2766 https://doi.org/10.1016/S0006-3495(02)75285-5
  7. Greenfield, N. J. and S. E. Hitchcock-DeGregori. 1995 The stability of tropomyosin, a two-stranded coiled coil protein is primarily a function of the hydrophobicity of residues at the helix-helix interface. Biochemistry. 34, 16797-16805 https://doi.org/10.1021/bi00051a030
  8. Greenfield, N., W. F. Stafford and S. E. Hitchcock- DeGregori. 1994. The effect of N-terminal acetylation on the structure of an N-terminal tropomyosin peptide and $\alpha$$\alpha$-tropomyosin. Protein Sci. 3, 402-10 https://doi.org/10.1002/pro.5560030304
  9. Hammell, R. and S. E. Hitchcock-DeGregori. 1996 Mapping the functional domains within the carboxyl terminus of $\alpha$-tropomyosin encoded by the alternatively spliced ninth exon. J. Biol. Chem. 271, 4236-4242 https://doi.org/10.1074/jbc.271.8.4236
  10. Heald, R. W. and S. E. Hitchcock-DeGregori. 1988. The structure of the amino terminus of tropomyosin is critical for binding to actin in the absence and presence of troponin. J. Biol. Chem. 263, 5254-5259
  11. Heeley, D. H., L. B., Smillie and E. M. Lohmeier-Vogel. 1989. Effects of deletion of tropomyosin overlap on regulated actomyosin subfragment 1 ATPase. Biochem J. 258, 831-836
  12. Hirel, P-H., J-M. Schmitter, P. Dessen, G. Fayat and S. Blanquet. 1989 Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc. Natl. Acad. Sci. 86, 8247-8251 https://doi.org/10.1073/pnas.86.21.8247
  13. Hitchcock-DeGregori, S. E., S. Mandala and G. A. Sachs. 1982. Changes in actin lysine reactivities during polymerization detected using a competitive labeling method. J. Biol. Chem. 257, 12573-12580
  14. Hitchcock-DeGregori, S. E., S. F. Lewis and T.M.-T. Chou. 1985. Tropomyosin lysine reactivities and relationship to coiled-coil structure. Biochemistry. 39, 11913-11920 https://doi.org/10.1021/bi000977g
  15. Jung, S.-J., S.-M. Seo, K.-H. Suh, J.-S. Yang and Y-J. Cho. 2001. Effect of three amino acid residues at the carboxyl terminus in unacetylated $\alpha$-tropomyosin on actin affinity. J. Life Science 11, 1-6
  16. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  17. Lehrer, S. and Morris. 1982. Dual effects of tropomyosin and troponin-tropomyosin on actomyosin subfragment 1 ATPase. J. Biol. Chem. 257, 8073-8080
  18. Maytum, R., M. A. Geeves and M. Konrad. 2000. Actomyosin regulatory properties of yeast tropomyosin are dependent upon N-terminal modification. Biochemistry. 39, 11913-11920 https://doi.org/10.1021/bi000977g
  19. Maytum, R., S. S. Lehrer and M. A. Geeves. 1999. Cooperativity and switching within the three-state model of muscle regulation. Biochemistry 38, 1102-1110 https://doi.org/10.1021/bi981603e
  20. Michele, D. E., F. P. Albayya and J. M. Metzger. 1999. Thin filament protein dynamics in fully differentiated adult cardiac myocytes: toward a model of sarcomere maintenance. J. Cell Biol. 145, 1483-1495 https://doi.org/10.1083/jcb.145.7.1483
  21. Monteiro, P. B., R. C. Lataro, J. A. Ferro and F. d. C. Reinach. 1994. Functional $\alpha$-tropomyosin produced in Escherichia coli. A dipeptide extension can substitute the amino terminal acetyl group. J. Biol. Chem. 269, 10461- 10466
  22. Moraczewska, M., K., Nicholson-Flynn and S. E. Hitchcock- DeGregori. 1999. The Ends of tropomyosin are major determinants of actin affinity and myosin subfragment 1-induced binding of F-actin in the open state. Biochemistry 38, 14885-15892 https://doi.org/10.1021/bi991816j
  23. Pittenger, M. F., J. A. Kazzaz and D. M. Helfman. 1994. Functional properties of non-muscle tropomyosin isoforms. Curr. Opin. Cell Biol. 1, 96-104 https://doi.org/10.1016/0955-0674(94)90122-8
  24. Pittenger, M. F., A. Kistler and D. M. Helfman. 1995. Alternatively spliced exons of the beta tropomyosin gene exhibit different affinities for F-actin and effects with nonmuscle caldesmon. J. Cell Sci. 108, 3253-3265
  25. Polevoda, B. and F. Sherman. (2003) N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J. Mol. Biol. 325, 595-622 https://doi.org/10.1016/S0022-2836(02)01269-X
  26. Polevoda, B. and F. Sherman. 2000. N$^{\alpha}$-terminal acetylation of eukaryotic proteins. J. Biol. Chem. 275, 36479-36482 https://doi.org/10.1074/jbc.R000023200
  27. Polevoda, B., T. S. Cardillo, T. C. Doyle, G. S. Bedi and F. Sherman. 2003. Nat3p and Mdm20p are required for function of yeast NatB N$^{\alpha}$-terminal acetyltransferase and of actin and tropomyosin. J. Biol. Chem. 278, 30686-30697 https://doi.org/10.1074/jbc.M304690200
  28. Ruiz-Opazo, N. and B. Nadal-Ginard. 1987. $\alpha$-tropomyosin gene organization. Alternative splicing of duplicated isotype- specific exons accounts for the production of smooth and striated muscle isoforms. J. Biol. Chem. 262, 4755-4765
  29. Sambrook. J., E. F. Fritsch and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
  30. Singer, J. and J. M. Shaw. 2003. Mdm20 protein functions with Nat3 protein to acetylate Tpm1 protein and regulate tropomyosin-actin interactions in budding yeast. Proc. Natl. Acad. Sci. 100, 7644-7649 https://doi.org/10.1073/pnas.1232343100
  31. Urbancikova, M. and S. E. Hitchcock-DeGregori. 1994. Requirement of amino-terminal modification for striated muscle alpha-tropomyosin function. J Biol Chem. 269, 24310-24315
  32. White, H. D. 1982. Special instrumentation and techniques for kinetic studies of contractile systems. Methods Enzymol. 85(Pt B), 698-708 https://doi.org/10.1016/0076-6879(82)85057-X
  33. Williams, D. L., L. E. Greene and E. Eisenberg. 1988. Cooperative turning on myosin subfragment 1 adenosine triphosphatase activity by the troponin-tropomyosin-actin complex. Biochemistry 27, 6987-6993 https://doi.org/10.1021/bi00418a048
  34. Winkelmann, D. A., H. Mekeel and I. Rayment. 1985. Packing analysis of crystalline myosin subfragment-1. Implication for the size and shape of myosin heads. J. Mol. Biol. 181, 487-501 https://doi.org/10.1016/0022-2836(85)90422-X
  35. Zot, A. S. and J. D. Potter. 1987. Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Ann. Rev. Biophys. Biophys. Chem. 16, 535-539 https://doi.org/10.1146/annurev.bb.16.060187.002535

피인용 문헌

  1. Glutamine Residue at 276 of smooth muscle α-tropomyosin is primarily responsible for higher actin affinity vol.17, pp.2, 2007, https://doi.org/10.5352/JLS.2007.17.2.204