DOI QR코드

DOI QR Code

A Comparison Study of Several Robust Regression Estimators under Various Contaminations

다양한 오염 상황에서의 여러 로버스트 회귀추정량의 비교연구

  • Published : 2004.11.01

Abstract

Several robust regression estimators are compared under contamination. Symmetric and asymmetric contamination schemes are used to measure the variance and MSE of regression estimators. Under asymmetric contamination depth-based regression estimator, especially projection based regression estimator(rcent) outperforms the rest and under symmetric contamination HBR performs relatively well.

위치추정량에서 로버스트한 추정기법 중의 하나로 알려진 데이터 뎁스(depth)를 회귀추정에 적용한 회귀뎁스(regression depth)는 Rousseeuw and Hubert(1999)에 의하여 제안되었다. 이 이외의 회귀뎁스 추정량으로는 심플리셜(simplicial) 뎁스와 사영(projection) 개념의 뎁스 회귀추정량들이 있다. 본 논문에서는 뎁스 기반 회귀추정량들의 성능에 대한 모의실험을 여러 오염 조건에서 행하여 비교하였으며 기존의 우수한 로버스트성을 지니는 추정량으로 최근에 제안된 HBR추정량(Chang et al., 1999)들과의 비교연구도 하였다. 2차원 공간에서의 실험은 전반적으로 사영뎁스기반 회귀추정량이 좋은 결과를 보여주었다.

Keywords

References

  1. Chang, W.H., Mckean, J.W., Naranjo, J.D., and Sheather,S.J. (1999). High breakdown rank regression, Journal of the American Statistical Association, 94, 445, Theory and Methods
  2. Donoho, D.L., and Huber, P.J. (1983). The notion of breakdown point, in: P.J. Bickel, K.A.DokSum and Hodges, Jr., eds, A Fesrschrift fee Erich L. Lehmann, Wadsworth, Belmont, CA, 157-184
  3. Hampel, F.R. (1974). The influence curve and its roles in robust estimation. Journal of the American Statistical Association, 69, 383-393 https://doi.org/10.2307/2285666
  4. Huber, P.J.(1973). Robust, regression: asymptotics, conjectures, and monte carlo. Annals of statistics, 1, 799-821 https://doi.org/10.1214/aos/1176342503
  5. Hubert, M., Rousseeuw. P.J., Van Aelst, S. (2001). similarities between location depth and regression depth, Trends in Mathematics, 159-172
  6. Hwang, J.S., Jorn, H.S., and Kim, J.K. (2004). On the performance of bivariate robusst location extimators under cotamination, Computaional Statistics Data Analysis, 44, 587-601 https://doi.org/10.1016/S0167-9473(02)00282-7
  7. Jaeckel, L.A. (1972). Estimation regression coefficients by minimizing the dispersion of residuals. Annoals of Mathematical Statistics, 43, 1449-1458 https://doi.org/10.1214/aoms/1177692377
  8. Liy, R.Y., Parelius, J.M., and Singh, K. (1999). Multivariate analysis by data depth: descriptive statistics, graphics and inference, Annals of Statistics, 18, 405-414
  9. Mallows, C.L. (1975). On some topics in robustness. Technical Memorandum, Bell Telephone Laboratories, Myrray hill, New Jersey
  10. Rousseeuw, P.J. (1984). Least median of squares regression, Journal of the American Statistical Association, 79, 871-880 https://doi.org/10.2307/2288718
  11. Rousseeuw,P.J., and Hubert, M. (1999). Regression depth, Journal of the American Statistical Association, 94, 388-402 https://doi.org/10.2307/2670155
  12. Rousseeuw,P.J., and Yohau, V.J. (1984). Robust regression by means of s-estimators, Robust and Nonlinear Time Series Analysis, Lecture Notes in Statistics, 26, 256-272, Springer, New York https://doi.org/10.1007/978-1-4615-7821-5_15
  13. Single, A.F. (1982). Robust regression using repeated medians, Biometrika, 69, 242-4 https://doi.org/10.1093/biomet/69.1.242
  14. zuo, Y., and Serfling, R. (2000). General notions of statistical depth funstion, Annals of Statistics, 28(2), 461-482 https://doi.org/10.1214/aos/1016218226