DOI QR코드

DOI QR Code

HGLM and EB Estimation Methods for Disease Mapping

HGLM과 EB 추정법을 이용한 질병지도의 작성

  • 김영원 (숙명여자대학교 통계학과) ;
  • 조나경 (숙명여자대학교 통계학과)
  • Published : 2004.11.01

Abstract

For the purpose of disease mapping, we consider the four small area estimation techniques to estimate the mortality rate of small areas; direct, Empirical estimation with total moment estimator and local moment estimator, Estimation based on hierarchial generalized linear model. The estimators are compared by empirical study based on lung cancer mortality data from 2000 Annual Reports on the Cause of Death Statistics in Gyeongsang-Do and Jeonla-Do published by Korean National Statistical Office. Also he stability and efficiency of these estimators are investigated in terms of mean square deviation as well as variation of estimates.

본 연구에서는 질병지도작성(disease mapping)을 위해 인접지역의 정보를 효과적으로 활용할 수 있는 EB(empirical Bayes) 추정 법과 HGLM(hierarchial generalized linear model)을 기초로 한 추정법을 다룬다. 사례연구로 이 추정방법들을 이용하여 2000년 사망원인통계자료를 이용해 경상도 및 전라도의 112개 시$.$$.$구 단위 행정자치구역별 45세 이상 폐암 사망률을 산출하고, 경상도 및 전라도 지역 폐암 사망률 지도를 작성한다. 아울러 제시된 방법들에 위해 얻어진 추정치들의 변동과 3년간 평균 사망률을 기준으로 구한 MSD(mean square deviation)를 이용하여 추정방법들의 특성을 비교 분석한다.

Keywords

References

  1. 통계청(2000). 사망원인통계연보
  2. Beasg, J. (1974). Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society B, 36, 192-236
  3. Clayton, D. and Kaldor, J. (1987). Empirical Bayes estimates of age-standardized relative risks for use in disease mapping, Biometrics, 43, 671-681 https://doi.org/10.2307/2532003
  4. Ghosh, M., Natarajan, K., Stroud, T. W. F., and Carlin, B. P. (1998). Generalized linear models for small-area estimation, Journal of the American Statistical Association, 93, 273-282 https://doi.org/10.2307/2669623
  5. Howe, G. M. (1970). National Attas of disease Mortality in the United Kingdom, revised and enlarged edn. Nelson, London
  6. Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models (with discussion). Journal of the Royal Statistical Society A, 161, 121-60 https://doi.org/10.1111/1467-985X.00094
  7. Lee, Y. and Nelder, J. A. (2001). Hierarchical generalized linear models: a synthesis of generalized linear models, random-effect models and structured dispersions, Biometrika, 88, 987-1006 https://doi.org/10.1093/biomet/88.4.987
  8. Marshall, R. J. (1991). Mapping disease and mortality rates using empirical Bayes estimators, Applied Statistics, 40, 283-294 https://doi.org/10.2307/2347593
  9. Rao, J. N. K (2003). Small Area Estimation, John Wiley and Sons, New York