유기성 폐기물의 고온고압수 반응에 의한 카르복시산 생성

Carboxylic Acids Produced from Hydrothermal Treatment of Organic Wastes

  • 강길윤 (부경대학교 응용화학공학부 화학공학전공) ;
  • 오창섭 (한국과학기술정보연구원) ;
  • 김용하 (부경대학교 응용화학공학부 화학공학전공)
  • 발행 : 2004.09.01

초록

본 논문은 다양한 종류의 유기성 폐기물을 이용하여 고온고압수 반응에 의해 생성되는 저분자 카르복시산의 거동에 관해 고찰하였으며 산화제 첨가에 대한 영향도 동시에 검토를 행하였다. 그 결과 acetic, formic, succinic 및 lactic acid와 같은 유기산이 주된 생성물임을 알 수 있었다. 생선내장의 경우 35$0^{\circ}C$(P=16 MPa)의 조건에서 acetic acid비 수율은 26mg/g-dry를 얻을 수 있었으며 산화제로서 $H_2O$$_2$를 첨가했을 경우 42mg/g-dry로 수율이 증가함을 알 수 있었다. 또한 글루코오스를 이용한 실험결과에서는 약 29mg/g-dry의 acetic acid를 얻을 수 있었다. 유기산 생성에 관한 온도 의존성을 검토한 결과, acetic acid는 열적 안정성이 있음을 알 수 있었으나 formic acid는 상대적으로 쉽게 분해하는 경향을 나타내었다. 또한 산화제를 첨가 할 경우, acetic acid와 같은 유기산의 생성을 촉진 시키는 결과를 얻을 수 있었다.

This paper reports production of low-molecular weight carboxylic acids from the hydrothermal treatment of representative organic wastes and compounds with or without oxidant (H$_2$O$_2$). Organic acids such as acetic, formic, succinic and lactic acids were obtained. This result increased to 42mg/g dry waste fish entrails in the presence of H$_2$O$_2$. Experiments on glucose representing cellulosic wastes were also carried out, getting acetic acid of about 29mg/g glucose. Studies on temperature dependance of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general. results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product.

키워드

참고문헌

  1. AIChE J. v.41 Reactions at Supercritical Conditions: Applications and Fundamentals Savage, P.E.;Gopalan, S.;Mizan, T.I.;Martino, C.J.;Brock, E.E.
  2. J. Supercrit. Fluids v.13 Supercritical Water Oxidation for the Destuction of Municipal Excess Sludge and Alcohol Distillery Wastewater of Molasses Goto, M.;Nada, T.;Ogata, A.;Kodama, A.;Hirose, A.
  3. Ind. Eng. Chem. Res. v.34 Wet Air Oxidation Mishra, V.S.;Mahajani, V.V.;Joshi, J.B.
  4. Ind. Eng. Chem. Fundam. v.23 no.4 Mechanism of the Oxidation of Aqueous Phenol with Dissolved Oxygen Devlin, H.R.;Harris, J.J.
  5. Ind. Eng. Chem. Res. v.38 no.10 Wet Oxidation Kinetics of Refractory Low Molecular Mass Carboxylic Acids Shende, R.V.;Levec, J.
  6. AIChE J. v.41 Acetic Acid Oxidation and Hydrolysis in Supercritical Water Meyer, J.C.;Marrone, P.A.;Tester, J.W.
  7. ACS Symp. Ser. v.666 Lactic Acid Production and Potential Uses:A Techmology and Economics Assessment Datta, R.;Tsai, S.-P.
  8. PhD. Thesis, University of Bombay Studies in Heterogeneous Reactions Merchant, K.P.
  9. J. Phys. Chem. v.104 no.19 Effect of Eater Density on Hydrogen Peroxide Dissociation in Supercritical Water. 2. Reaction Kinetics Akiya, N.;Savage, P.E.
  10. Ind. Eng. Chem. Res. v.36 no.11 Kinetics of Wet Oxidation of Formic Acid and Acetic Acid Shende, R.V.;Mahajani, V.V.
  11. Can. J. Chem. Eng. v.79 Optimization of Amino Acids Production from Waste Fish Entrails by Hydrolysis in Sub- and Supercritical Water Kang, K.;Quitain, A.T.;Damon, H.;Noda, R.;Goto, N.;Fujie, K.
  12. Proceedings of the ACS Symposium Serious Datta, R.;Tsai, S.
  13. Kagaku Kougyou v.50 Production of Organc Acids and Amino Acids from Fish Meat by Subcritical Water Hydrolsis Yoshida, H.;Terashima, M.;Takahashi, Y.
  14. Ind. Eng. Chem. Res. v.38 no.7 Oxidation and Hydrolysis of Lactic Acid in Near-Critical Water Li, L.;Portela, J.R.;Vallejo, D.;Gloyna, E.F.