Low-Loss Polymeric Waveguides Having Large Cores Fabricated by Hot Embossing and Micro-contact Printing Techniques

  • Yoon, Keun Byoung (Optical Interconnection Team, Electronics and Telecommunications Research Institute (ETRI))
  • 발행 : 2004.10.01

초록

We present simple, low-cost methods for the fabrication of polymeric waveguides that have large core sizes for use as optical interconnects. We have used both hot embossing and micro-contact printing techniques for the fabrication of multimode waveguides using the same materials. Rectangular and large-core (60${\times}$60 $\mu\textrm{m}$$^2$) channels were readily prepared when using these methods. The dimensions of the embossed and printed channels were the same as those of the pattern on the original master. The polymeric waveguides that we fabricated with large core sizes exhibited a low propagation loss of 0.1 dB/cm at 850 nm, which indicates that hot embossing and micro-contact printing are suitable techniques for the fabrication of optical waveguides having large-core.

키워드

참고문헌

  1. J. Lightwave Technol. v.14 L. Eldada;C. Xu;K. M. T. Stengle;L. W. Shacklette;J. T. Yardley https://doi.org/10.1109/50.507948
  2. Electron. Lett. v.33 G. Fischbeck;R. Moosburger;C. Kostrezewa;A. Achen;K. Petermann https://doi.org/10.1049/el:19970307
  3. J. Lightwave Technol. v.16 J. Kobayashi;T. Matsuura;Y. Hida;S. Sasaki;T. Moruno https://doi.org/10.1109/50.681459
  4. Jpn. J. Appl. Phys. v.37 R. Yoshimura;M. Hikita;S. Tomaru;S. Imamura https://doi.org/10.1143/JJAP.37.3657
  5. Opt. Mater. v.21 U. Streppel;P. Dannburg;C. Wachter;A. Brauer;L. Fronlich;R. Houbertz;M. Popall https://doi.org/10.1016/S0925-3467(02)00186-6
  6. Macromol. Res. v.12 K. B. Yoon https://doi.org/10.1007/BF03218402
  7. Japan. J. Appl. Phys. v.42 J.-S. Kim;J.-W. Kang;J.-J. Kim https://doi.org/10.1143/JJAP.42.1277
  8. Appl. Phys. Lett. v.79 W. H. Wong;E. Y. B. Pun https://doi.org/10.1063/1.1421229
  9. J. Mater. Res. v.16 B. S. Bae;O. H. Park;R. Charters;B. Luther-Davis;G. R. Atkins https://doi.org/10.1557/JMR.2001.0439
  10. IEEE, Photonics Technol. Lett. v.15 C.-G. Choi;S.-P. Han;B. C. Kim;S.-H. Ahn.;M.-Y. Jeong
  11. Japan. J. Appl. Phys. v.43 K. B. Yoon;C.-G. Choi;S.-P. Han https://doi.org/10.1143/JJAP.43.3450
  12. Electron. Lett. v.32 T. H. Knoche;L. Muller;R. Klein;A. Neyer https://doi.org/10.1049/el:19960862
  13. IEEE Photonics Technol. Lett. v.12 B.-T. Lee;M.-S. Kwon;J.-B. Yoon;S.-Y. Shin https://doi.org/10.1109/68.817494
  14. J. Lightwave Technol. v.22 J.-S. Kim;J.-J. Kim https://doi.org/10.1109/JLT.2004.824523
  15. Microelectron. Engineer. v.67-68 S. Park;C. Padeste;H. Schift;J. Gobrecht https://doi.org/10.1016/S0167-9317(03)00078-9
  16. J. Korean Ind. Eng. Chem. v.15 K. B. Yoon