References
- Bowyer, A., 1981, 'Computing Dirichlet Tessellations,' Computer Journal, Vol. 24, pp. 162-166 https://doi.org/10.1093/comjnl/24.2.162
- Dechaumphai, P. and Morgan, K., 1992, 'Transient Thermal-Structural Analysis using Adaptive Unstructured Remeshing and Mesh Movement,' Thermal Structures and Materials for High-Speed Flight, AIAA, Washington, D.C., pp. 205-228
- Dechaumphai, P. and Phongthanapanich, S., 2003, 'High-Speed Compressible Flow Solutions by Adaptive Cell-Centered Upwinding Algorithm with Modified H-correction Entropy Fix,' Advances in Engineering software, Vol. 32, pp. 533-538 https://doi.org/10.1016/S0965-9978(03)00083-8
- Frey, W. H., 1991, 'Mesh Relaxation : A New Technique for Improving Triangulations,' International Journal for Numerical Methods in Engineering, Vol. 31, pp. 1121-1133 https://doi.org/10.1002/nme.1620310607
- Frink, N. T., 1994, 'Recent Progress toward a Three-dimensional Unstructured Navier-Stokes Flow Solver,' 32th Aerospace Sciences Meeting, Reno, Nevada, AIAA Paper-94-0061
- Gressier, J. and Moschetta, J. M., 2000, 'Robustness versus Accuracy in Shock-wave Computations,' International Journal for Numerical Methods in Fluids, Vol. 33, pp. 313-332 https://doi.org/10.1002/1097-0363(20000615)33:3<313::AID-FLD7>3.0.CO;2-E
- Harten, A. (1983). 'High resolution schemes for hyperbolic conservation laws.' Journal of Computational Physics, Vol. 49, pp.357-393 https://doi.org/10.1016/0021-9991(83)90136-5
- Holmes, D. G. and Connell, S. D., 1989, 'Solution of the 2D Navier-Stokes Equations on Unstructured Adaptive Grids,' 9th Computational Fluid Dynamics Conference, Buffalo, New York, AIAA Paper-89-1932-CP
- Kang, H. K., Tsultahara, M., Ro, K. D. and Lee, Y. H., 2002, 'Numerical Simulation of Shock Wave propagation using the Finite Difference Lattice Boltzmann Method,' KSME International Journal, Vol. 16, pp. 1327-1335
- Kang, H. K., Tsutahara, M., Ro, K. D. and Lee, Y. H., 2003, 'Numerical Analysis of a Weak Shock Wave Propagating in a Medium using Lattice Boltzmann Method (LBM),' KSME International Journal, Vol. 17, pp. 2034-2041
- Karamete, B. K., Tokdemir, T. and Ger, M., 1997, 'Unstructured Grid Generation and a Simple Triangulation Algorithm for Arbitrary 2-D Geometries using Object Oriented Programming,' International Journal for Numerical Methods in Engineering, Vol 40, pp. 251-268 https://doi.org/10.1002/(SICI)1097-0207(19970130)40:2<251::AID-NME62>3.0.CO;2-U
- Lin, H. C., 1995, 'Dissipation Additions to Flux-Difference Splitting,' Journal of Computational Physics, Vol. 117, pp. 20-27 https://doi.org/10.1006/jcph.1995.1040
- Linde, T. and Roe, P. L., 1997, 'Robust Euler Codes,' AIAA Paper-97-2098, 13th Computational Fluid Dynamics Conference, Snowmass Village, CO
- Liou, M. S. and Steffen, C. J., 1993, 'A New Flux Splitting Scheme,' Journal of Computational Physics, Vol. 170, pp. 23-39 https://doi.org/10.1006/jcph.1993.1122
- Marchant, M. J. and Weatherill, N. P., 1993, 'Adaptivity Techniques for Compressible Inviscid Flows,' Computer Methods in Applied Mechanics and Engineering, Vol. 106, pp. 86-106 https://doi.org/10.1016/0045-7825(93)90186-2
- Pandolfi, M. and D'Ambrosio, D., 2001, 'Numerical Instabilities in Upwind Methods : Analysis and Cures for the 'Carbuncle' Phenomenon,' Journal of Computational Physics, Vol. 166, pp. 271-301 https://doi.org/10.1006/jcph.2000.6652
- Perry, K. M. and Imlay, S. T., 1988, 'Bluntbody Flow Simulations,' 24th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, Boston, MA, AIAA Paper-88-2904
- Phongthanapanich, S. and Dechaumphai, P., 2004, 'Evaluation of Combined Delaunay Triangulation and Remeshing for Finite Element Analysis of Conductive Heat Transfer,' Transactions of the Canadian Society for Mechanical Engineering, Vol. 27, pp. 319-340
- Probert, J., Hassan, O., Peraire, J. and Morgan, K., 1991, 'An Adaptive Finite Element Method for Transient Compressible Flows,' International Journal for Numerical Methods in Engineering, Vol. 32, pp. 1145-1159 https://doi.org/10.1002/nme.1620320514
- Quirk, J. J., 1994, 'A Contribution to the Great Riemann Solver Debate,' International Journal for Numerical Methods in Fluids, Vol. 18, pp. 555-574 https://doi.org/10.1002/fld.1650180603
- Roe, P. L. (1981). 'Approximate Riemann Solvers, parameter vectors, and difference schemes,' Journal of Computational Physics, Vol. 43, pp.357-372 https://doi.org/10.1016/0021-9991(81)90128-5
- Sanders, R., Morano, E. and Druguet, M. C., 1998, 'Multidimensional Sissipation for Upwind Schemes : Stability and Applications to Gas Dynamics,' Journal of Computational Physics, Vol. 145, pp. 511-537 https://doi.org/10.1006/jcph.1998.6047
- Shu, C. W. and Osher, S., 1988, 'Efficient Implementation of Essentially Non-Oscillatory Shock-capturing Schemes,' Journal of Computational Physics, Vol. 77, pp. 439-471 https://doi.org/10.1016/0021-9991(88)90177-5
- Steger, J. L. and Warming, R. F., 1981, 'Flux Vector Splitting of the Inviscid Gasdynamic Equations with Applications to Finite Difference Methods,' Journal of Computational Physics, Vol. 40, pp. 263-293 https://doi.org/10.1016/0021-9991(81)90210-2
- Takayama, K. and Jiang, Z., 1997, 'Shock Wave Reflection over Wedges : a Benchmark Test for CFD and Experiments,' Shock Waves, Vol. 7, pp. 191-203 https://doi.org/10.1007/s001930050075
- Toro, E. F., Spruce, M. and Speares, W., 1994, 'Restoration of the Contact Surface in the HLL-Riemann Solver,' Shock Waves, Vol. 4, pp. 25-34 https://doi.org/10.1007/BF01414629
- Van Leer, B., Lee, W. T. and Powell, K. G., 1989, 'Sonic-Point Capturing,' 9th Computational Fluid Dynamics Conference, Buffalo, New York, AIAA Paper-89-1945-CP
- Vekatakrishnan, V., 1995, 'Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters,' Journal of Compuational Physics, Vol. 118, pp. 120-130 https://doi.org/10.1006/jcph.1995.1084
- D. F. Watson, 'Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes,' Comput. J., vol 24, no. 2, pp. 167-172, 1981 https://doi.org/10.1093/comjnl/24.2.167
- Yee, H. C., Warming, R. F. and Harten, A., 1985, 'Implicit Total Variation Diminishing (TVD) Schemes for Steady-state Calculations,' Journal of Computational Physics, Vol. 57, pp. 327-360 https://doi.org/10.1016/0021-9991(85)90183-4
- Borouchaki, H., George, P. L. and Mohammadi, B., 1997, 'Delaunay Mesh Generation Governed by Metric Specifications. Part II. Application.' Finite Elements in Analysis and Design, Vol. 25, pp. 85-109 https://doi.org/10.1016/S0168-874X(96)00065-0