농어, Lateolabrax japonicus 유어의 성장에 있어 사육 수온의 영향

Influence of Water Temperature on Growth of Yearling Sea Bass, Lateolabrax japonicus in Indoor Tank

  • 강덕영 (국립수산과학원 서해수산연구소) ;
  • 한형균 (국립수산과학원 어류양식연구센터) ;
  • 전창영 (국립수산과학원 연구기획실)
  • 발행 : 2004.11.01

초록

본 연구에서는 우리나라 남동해 연안에서 4계절 동안 나타나는 전형적 수온 범위(3~33$^{\circ}C$)에서 양성용 농어의 사료 섭식량 및 효율,성장,생존 등에 있어 수온의 영향을 파악해 보고, 양성시 농어의 최적 사육수온 조건을 구명하고자 실시하였다. 실험 결과,농어는 수온 범위 6-3$0^{\circ}C$적정한 어종으로 판단되지만, 사료섭식량, 사료효율, 성장, 생존을 동시에 고려했을 때, 정상적인 양성을 위해서는 동절기 수온을 17$^{\circ}C$이상 유지하는 것이 정상적인 성장을 유지해 줄 수 있으며, 하절기의 경우 수온 21-27$^{\circ}C$가 적정 한 것으로 판단된다.

Two experiments were conducted to study the effect of temperature on growth and survival of yearling sea bass, Lateolabrax japonicus reared from 3$^{\circ}C$ to 33$^{\circ}C$. In the I st experiment, we used yearlings fish averaging 19.2$\pm$0.2 cm/fish (Mean$\pm$S.E.M.) of total length (TL) and 67.0$\pm$1.8 g/fish (Mean$\pm$S.E.M.) of body weight (BW), and we cultured the fish at 3, 6, 9, 12 and 17$^{\circ}C$ for 90 days. In the 2nd experiment, the experimental fish averaging 24.9$\pm$0.1 cm/fish (Mean$\pm$S.E.M) of TL and I 46.4$\pm$3.0 g/fish (Mean$\pm$S.E.M) of BW were reared at 21,24,27,30 and 33$^{\circ}C$ for 90 days. During these experiments, we measured food intake, feed efficiency, survival and growth (TL and BW) in the both experiments. Although food intake of the yearling increased with the temperature, the feed efficiency was only enhanced within the temperature range, from 21 to 27$^{\circ}C$. Growth of yearling was normal within the temperature range from 17 to 3$0^{\circ}C$, but it was stoped or reduced in other temperatures. Survival rate was significantly reduced in 3$^{\circ}C$ from the 1st experiment and in 30 and 33$^{\circ}C$ from the 2nd experiment, but there was no significant difference among other groups.

키워드

참고문헌

  1. Ayala, M.. D. O. Lopez-Albars, F. Gil, A. Garcia-Alcazar, E. Abelian, J. A. Alarcon, M. C. Alvarez, G. Ramirez-Zarzosa and F. Moreno, 2001. Temperature effects on muscle growth in two populations (Atlantic and Mediterranean) of sea bass, Dicentrarchus labrax L. Aquaculture, 202: 359-370 https://doi.org/10.1016/S0044-8486(01)00785-2
  2. Barton, B. A and C. B. Schreck, 1987, Influence of acclimation temperature on interrenal and carbohydrate stress responses in juvenile chinook salmon (Oncorhynchus tshawytscha). Aquaculture, 62: 299-310 https://doi.org/10.1016/0044-8486(87)90172-4
  3. Barton, B. A and G. K. Iwama, 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Anual Rev. Fish. Dis. 3-26
  4. Berg, A., T. Hansen and S. Stefansson, 1992. First feeding of Atlantic salmon (Salmo salar L.) under different photoperiods. J. App. Ichthy., 8: 251-256 https://doi.org/10.1111/j.1439-0426.1992.tb00691.x
  5. Brett, J. R., 1979. Environmental factors and growth, In Fish Physiology Vill, eds. by Hoar, W. S., D. J. Randall and J. R. Brett, London, Academic Press, pp. 599-675
  6. Carragher, J. F. and J. P. Sumpter, 1990. The effect of on the secretion of sex steroids from cultured ovarian follicles of rainbow trout. Gen. Compo Endocrinol., 77: 403-407 https://doi.org/10.1016/0016-6480(90)90230-J
  7. Clarke, W. C., J. R Shelboume and J. R. Brett, 1981. Effects of artificial photoperiod cycles, temperature and salinity on growth and smolting in underyearling coho (Oncorhynchus kisutch), chinook (O. tshawytscha), and sockeye (O. nerka) salmon. Aquaculture, 22: 105-116 https://doi.org/10.1016/0044-8486(81)90137-X
  8. Davis, K. Band N. C. Parker, 1990. Physiological stress in striped bass: effect of acclimation temperature. Aqaculture, 91: 349-358 https://doi.org/10.1016/0044-8486(90)90199-W
  9. Elliott, J. M., 1979. Energetics of freshwater teleosts. Symposium of the Zoological Society of London, 44: 29-61
  10. Elliott, J. M., 1982. The effect of temperature and ration size on the growth and energetics of salmonids in captivity. Comparative Biochemistry and Physiology, 73B: 81-91
  11. Hochachka, P. W. and G.N. Somero, 2001. In Biochemical Adaptation, Oxford: Oxford University Press
  12. Han, H.-K., D.-Y Kang, C.-Y Jun and Y-J. Chang, 2003. Effect of salinity change on physiological response and growth of yearling sea bass, Lateolabrax japonicus. J. Aquaculture, 16: 31-36
  13. Homing, W. B. I. and R. E. Pearson, 1973. Growth temperature requirement and lower lethal temperature for juvenile smallmouth bass (Micropterus dolomieui). J. Fish. Res. Bd. Can., 30: c https://doi.org/10.1139/f73-194
  14. Hunt von Herbing, I., 2002. Effects of temperature on larval fish swimming performance: the importance of physics to physiology. J. Fish BioI. 61: 865-876 https://doi.org/10.1111/j.1095-8649.2002.tb01848.x
  15. Ishioka, H., 1980. Stress reactions in the marine fish. ?. Stress reactions induced by temperature change. Bull. Jpn. Soc. Sci. Fish., 46: 523-532 https://doi.org/10.2331/suisan.46.523
  16. Jobling, M., 1994. In Fish Bioenergetics. London, Chapman & Hall
  17. Johnston, I. A. and H. A. McLay, 1997. Temperature and family effects on muscle cellularity at hatch and first feeding in Atlantic salmon Salmo salar L. Can. J. Zool., 75: 64-74 https://doi.org/10.1139/z97-008
  18. Johnston, I. A., V. L. A. Vieira and J. Hill, 1996. Temperature and ontogeny in ectotherms: muscle phenotype in fish. In Phenotypic and Evolutionary adaptation of Organisms to Temperature. eds. Johnston, I. A. and A. F. Bennett, Soc. Exp. BioI. Semin. Ser. Cambridge Univ. Press, Cambridge, pp. 153-181
  19. Maule, A. G., C. B. Schreck and S. L. Kaattari, 1987. Change in the immune system of coho salmon (Oncorhynchys kisutch) during the parr-to-smolt transformation and after implantation of cortisol. Can. .J. Fish. Aquat. Sci., 44: 161-166 https://doi.org/10.1139/f87-021
  20. Nathanailides, C., O. L6pez-Albors, E. Abellan, J. M., Vazquez, D. D. Tyler, A. Rowlerson, N. C. Stickland, 1996. Muscle cellularity in relation to somatic growth in the European sea bass, Dicentrarchus labrax L. Aquacult. Res., 27: 885-889 https://doi.org/10.1111/j.1365-2109.1996.tb01247.x
  21. Pickering, A. D., 1992. Rainbow trout husbandry: management of the stress response. Aquaculture, 100: 125-139 https://doi.org/10.1016/0044-8486(92)90354-N
  22. Robertson, L., P. Thomas and C. R. Arnold, 1988. Plasma cortisol and secondary stress responses of cultured red drum (Sciaenops cellatus) to several transportation procedure. Aquaculture, 68: 115-130 https://doi.org/10.1016/0044-8486(88)90235-9
  23. Ryan, S. N., 1995. The effect of chronic heat stress on cortisol levels in the Antartic fish Pagothenia borchgrevinki. Experientia, 51: 768-774 https://doi.org/10.1007/BF01922428
  24. Schreck, C. B., 1982. Stress and rearing of salmonids. Aquaculture, 28: 241-249 https://doi.org/10.1016/0044-8486(82)90026-6
  25. Strange, R. J., C. B. Schreck and J. T. Golden, 1977. Corticoid stress responses to handling and temperature in salmonids. Trans. Am. Fish. Soc., 106: 213-217 https://doi.org/10.1577/1548-8659(1977)106<213:CSRTHA>2.0.CO;2
  26. Weatherley, A. H. and H. S. Gill, 1987. In The Biology of Fish Growth. London, Academic Press
  27. Woo, N. Y. S., 1990. Metabolic and osmoregulatory change during temperature acclimation in the red sea bream, Chrysophrys major: Implications for its culture in the subtropics. Aquaculture, 87: 197-208 https://doi.org/10.1016/0044-8486(90)90275-R