과재하중이 있는 Unpropped Diaphragm Wall의 변위양상에 관한 원심모델링

Centrifugal Modelling on the Displacement Mode of Unpropped Diaphragm Wall with Surcharge

  • 허열 (충북대학교 토목공학과) ;
  • 이처근 (충남도립 청양대학 토목과) ;
  • 안광국 ((주)아이콘텍 기술연구소)
  • 발행 : 2004.10.01

초록

본 연구에서는 화강풍화토 지반상 unpropped diaphragm wall의 거동을 연구하기 위하여 과재하중의 이격거리를 변화시키면서 원심모형실험을 수행하였다. 원심모형실험시 지반굴착은 흙과 동일한 밀도로 혼합된 zinc chloride 용액이 배수되도록 밸브를 조작하여 실시하였으며, 굴착에 따라 발생하는 지반의 변형과 벽체의 변위 및 휨모멘트를 측정하였다. 수치해석은 대부분의 지반공학 문제에 적용할 수 있는 FLAC 프로그램을 이용하였다. 수치해석에서 모형지반은 Mohr-Coulomb 모델, diaphragm wall은 탄성모델을 사용하여 2차원 평면변형률 조건으로 해석을 수행하였다. 모형실험 결과 파괴면의 직선적인 형태로 파괴면내의 배면측 지반은 벽체를 향하여 하향의 변위를 일으키면서 벽체의 회전에 의해 파괴되었으며, 파괴면의 각도는 67∼74$^{\circ}$정도로 이론적인 파괴면의 각도보다 크게 평가되었다. 실험 및 해석 결과 지반의 최대침하량이 발생하는 위치는 잘 일치하였으며, 깊이에 따른 벽체변위는 선형적인 관계를 나타내었다.

In this study, the behavior of unpropped diaphragm walls on decomposed granite soil was investigated through centrifugal and numerical modelling. Centrifuge model tests were performed by changing the interval distance of surcharge. Excavation was simulated during the centrifuge tests by operating a solenoid valve that allowed the zinc chloride solution to drain from the excavation. In these tests, ground deformation, wall displacement and bending moment induced by excavation were measured. FLAC program which can be able to apply far most geotechnical problems was used in the numerical analysis. In numerical simulation, Mohr-Coulomb model fur the ground model, an elastic model for diaphragm wall were used for two dimensional plane strain condition. From the results of model tests, failure surface was straight line type, the ground of retained side inside failure line had downward displacement to the direction of the wall, and finally the failure was made by the rotation of the wall. The angle of failure line was about 67 ∼ 74$^{\circ}$, greater than calculated value. The locations of the maximum ground settlement obtained from model tests and analysis results are in good agreements. The displacement of wall and the change of the embedment depth is likely to have linear relationship.

키워드

참고문헌

  1. 이처근, 안광국, 허열(2000), '화강토 지반상에 시공되는 Diaph-ragm Wall의 거동에 관한 원심모형 실험', 대한토목학회 논문집, 제20권, 제1-C호, pp.47-57
  2. Bica, A. V. D., and Clayton, C. R. I. (1998), 'An Experimental Study of the Behaviour of Embedded Lengths of Cantilever Walls', Geotechnique, Vol.48, No.6, pp.731-745 https://doi.org/10.1680/geot.1998.48.6.731
  3. Bolton, M. D. and Powrie, W. (1987), 'Collapse of Diaphragm Walls Retaining Clay', Geotechnique, Vol.37, No.3, pp.335-353 https://doi.org/10.1680/geot.1987.37.3.335
  4. Bolton, M. D. and Stewart, D. I. (1994), 'The Effect on Diaphragm Walls of Rising Groundwater in Stiff Clay', Geo-technique, Vol.44, No.1, pp.111-127
  5. Fourie, A. B. and Potts, D. M. (1989), 'Comparison of Finite Element and Limit Equilibrium Analyses for an Embedded Cantil-ever Retaining Wall', Geotechnique, Vol.39, No.2, pp.175-188 https://doi.org/10.1680/geot.1989.39.2.175
  6. Hashash, Y. M. A., and Whittle, A. J. (1996), 'Ground Movement Prediction for Deep Excavations in Soft Clay', Journal of Geotechnical and Geoenvironmemal Engineering, ASCE, Vol.122, No.6, pp.474-486 https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(474)
  7. Horvath, J. S. (1991), 'Effect of Footing Shape on Behavior of Cantilever Retaining Wall', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.117, No.6, pp.973-978 https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(973)
  8. Itasca Consulting Group Inc. (1995), 'FLAC Version 3.3', Vol.IIV
  9. Kusakabe, O. (1982), 'Stability of Excavation in Stiff Clays', Ph.D Dissertation, Cambridge University
  10. Ou, C. Y., Hsieh, P. G., and Chiou, D. C. (1993), 'Characteristics of Ground Surface Settlement During Excavation', Canadian Geotechnical Journal, Vol.30, No.5, pp.758-767 https://doi.org/10.1139/t93-068
  11. Potts, D. M., and Fourie, A. B. (1984), 'The Behaviour of a Propped Retaining Wall : Results of a Numerical Investigation', Geo-technique, Vol.34, No.3, pp.383-404
  12. Powrie, W. (1986), 'The Behaviour of Diaphragm Walls in Clay', Ph.D Dissertation, Cambridge University
  13. Powrie, W. (1997), 'Soil Mechanics; Concepts and Applications', E & FN Spon, pp.233-280
  14. Richards, D. J., and Powrie, W. (1998), 'Centrifuge Model Tests on Doubly Propped Embedded Retaining Walls in Overconsolidated Kaolin Clay', Geotechnique, Vol.48, No.6, pp.833-846 https://doi.org/10.1680/geot.1998.48.6.833
  15. Tedd, P., Chard, B. M., Charles, J. A. and Symons, I. F. (1984), 'Behaviour of a Propped Embedded Retaining Wall in Stiff Clay at Bell Common Tunnel', Geotechnique, Vol.34, pp.513-532 https://doi.org/10.1680/geot.1984.34.4.513