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RS-COMPACTNESS IN A REDEFINED FUZZY
TOPOLOGICAL SPACE

CHUN-KEE PARK AND WON KEUN MIN

ABSTRACT. In this paper, we introduce the concepts of interior of a fuzzy set and
several types of fuzzy compactness and fuzzy RS-compactness in a redefined fuzzy
topological space and investigate their properties.

1. INTRODUCTION

Hazra, Samanta & Chattopadhyay [5] introduced a fuzzy topology on X as a
mapping 7 : I — I satisfying some conditions which is a generalization of Chang’s
fuzzy topology (cf. Chang {2]). In this paper, we will call the fuzzy topology in-
troduced by Hazra, Samanta & Chattopadhyay [5] a Hazra-Samanta-Chattopadhyay
fuzzy topology. Fuzzy almost compactness, fuzzy near compactness and fuzzy RS-
compactness in fuzzy topological spaces were studied by several authors Eg 3], Kudri
& Warner [6] and Mukherjee & Ghosh [7].

In this paper, we introduce the concepts of interior of a fuzzy set and several types
of fuzzy compactness and fuzzy RS-compactness in a redefined fuzzy topological
space and investigate their properties.

2. PRELIMINARIES

Let X be a non-empty set and I = [0, 1] be the unit interval of the real line. IX
will denote the set of all fuzzy sets of X. 0x and 1x will denote the characteristic
functions of & (the empty set) and X, respectively.
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A Hazra-Samanta-Chattopadhyay fuzzy topological space (HSCfts) (cf Hazra,
Samanta & Chattopadhyay [5]) is an ordered pair (X,7), where 7 : IX — I is
a mapping satisfying the following conditions:

(01) 7(0x) =71(1x) =1,
(02) if 7(A) > 0 and 7(B) > 0, then 7(AN B) > 0;
(03) if 7(A;) > 0 for each i € J, then 7(|J;; 4i) > 0.

Then the mapping 7 : IX — I is called a Hazra-Samanta-Chattopadhyay fuzzy
topology(HSCft) or a gradation of openness on X.
If the HSCft 7 on X satisfies the following condition:

(04) 7(I*) € {0,1},

then 7 corresponds in a one to one way to a fuzzy topology in Chang’s sense (cf.
Chang [2]).

A mapping 7* : IX — I is called a Hazra-Samanta-Chattopadhyay fuzzy cotopol-
ogy (HSCfc) or a gradation of closedness on X (cf. Hazra, Samanta & Chattopad-
hyay [5]) if the following three conditions are satisfied:

(C1) 7*(0x) = 7"(1x) = 1;
(C2) if 7*(A) > 0 and 7*(B) > 0, then 7*(AU B) > 0;
(C38) if 7*(4;) > 0 for each i € J, then 7*([;; 4i) > 0.

If 7 is a HSCft on X, then the mapping 7* : IX — I, defined by 7*(A) = 7(A°)
where A€ denotes the complement of A, is a HSCfc on X. Conversely, if 7* is a
HSCfc on X, then the mapping 7 : IX — I, defined by 7(A4) = 7*(A4°), is a HSCft
on X (cf. Hazra, Samanta & Chattopadhyay [5]).

Let (X, 7) and (Y, o) be two HSCfts’s. f: X — Y is called a gradation preserving
map (gp-map) (cf. Hazra, Samanta & Chattopadhyay [5]) if 7(f~1(4)) > o(A) for
every A€ IY. f: X — Y is called a weakly gradation preserving map (wgp-map)
(¢f. Hazra, Samanta & Chattopadhyay [5]) if 0(A) > 0 = 7(f~1(A)) > 0 for every
A € IY. Clearly, a gp-map is a wgp-map. f : X — Y is a gp-map if and only if
™(fY(A)) > o*(A) forevery A€ I¥. f: X - Y is a wgp-map if and only if
o*(A) > 0= 7*(f"1(A)) > 0 for every A € I¥.
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3. PROPERTIES OF CLOSURE AND INTERIOR

Definition 3.1 (Hazra, Samanta & Chattopadhyay [5]). Let (X,7) be a HSCfts
and A € IX. The 7-closure of A, denoted by A, is defined by

A=n{KerI* :7*(K)>0,ACK}.
Definition 3.2. Let (X, 7) be a HSCfts and A € IX. The 7-interior of A, denoted
by A°?, is defined by

A°=U{K e I*X : 7(K) > 0,K C A}.

Remark 3.3. Let (X, 7) be a HSCfts. Then

(a) In view of O3 and C3 from Definitions 3.1 and 3.2, it follows that 7*(4) > 0
and 7(A4°) > 0 for all A € IX.
(b) Let T; = {4 € I* : 7(A) > 0} be the support of 7. Then T; is a Chang fuzzy
topology on X. For each A € IX, define the 7;-closure and T;-interior of A by
cds(A)=n{KeI*:K°eT,,AC K}
ints(A) =U{K € IX : K € T;, K C A}.

Clearly, A4 = cl;(A) and A° = int,(A) for each A € I*X.

Theorem 3.4 (Hazra, Samanta & Chattopadhyay [5]). Let (X,7) be a HSCfts and
A,B € IX. Then

0 = OX;

Theorem 3.5. Let (X, 7) be a HSCfts and A, B € IX. Then
(a) 1% = 1x,

(b) A° C A,

(c) ACB= A°C B°,

(d) (A%)° = 42,

(e) (AN B)° = A°n B°.

Proof. (a), (b) and (c) follow directly from Definition 3.2.
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(d) From (b) we have (A°)° C A°. From Remark 3.3(a) we have 7(4°) > 0. From
Definition 3.2 A° C (A°)° because A° C A°. Hence (A°)° = A°.

(e) Since ANB C A and AN B C B, from (c) we have (AN B)° C A° and
(AN B)° C B°. Hence (AN B)° C A°N B°. From (b) we have A°N B° C AN B.

Since 7(A°) > 0 and 7(B°) > 0 by Remark 3.3(a), 7(4° N B°) > 0. From
Definition 3.2 we have A° N B° C (AN B)°. Hence (AN B)° = A°N B°. a

Theorem 3.6. Let (X,7) be a HSCfts and A € IX. Then
(a) 7*(A) >0 A=A,
(b) 7(A) >0 A= A°.

Proof. The proof is straightforward. a

Theorem 3.7. Let (X, 7) be a HSCfts and A € IX. Then
(a) (4 = @),
(b) A° = ((49))",
(c) (A)° = (A°),

(d) A= ((4%)°)°
Proof. The proof is straightforward. |

Theorem 3.8. Let (X, 7) and (Y, o) be two HSCfts’s. Then the following are equiv-
alent:

(a) f: X =Y is a wgp-map.

(b) f(A) C f(A) for every A € IX.

(c) f~I(A) C f1(A) for every A€ I¥.

(d) f~1(A°) C (f~Y(A))° for every A€ I¥.

Proof. (a) = (b). In view of Remark 3.3(a) for every A € IX, we have o*(f(A4)) > 0
and hence from (a), 7*(f~*(f(4))) > 0. Hence by Theorem 3.6(a),

FHFA) = FUF(A) 2 FHF(A) 2 A

Hence f(A) C f(A).
(b) = (c). For every A € IY, from (b) we have

F(F7H(A) C F(F1(4)) C A

Hence f~1(A) C f~1(4).
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(c) = (d). For every A € I, from (c) and Theorem 3.7 we have

((F74A))°)° = (F~1(4))° = FI(A9) C £71((4%))
= F71((4%)°) = (F71(49)"
Hence f1(A°) C (f1(A))°.

(d) = (a). Let o(A) > 0 for A € IY. Then A = A° by Theorem 3.6. From (d)
we have

FUA) = 1A% S (F71(A)°

Thus f~1(A) = (f~!(A))° by Theorem 3.5. Hence 7(f~!(A4)) > 0 by Theorem
3.6. Thus f is a wgp-map. a

Definition 3.9. Let (X, 7) and (Y, 0) be two HSCfts’s.

(a) f: X =Y is called a gradation carrier map (gc-map) if 7(A) < o(f(A)) for
every A € IX.

(b) f: X — Y is called a weakly gradation carrier map (wgc-map) if 7(A) > 0 =
o(f(A)) > 0 for every A € IX.

Note that a gc-map is a wgc-map.

Theorem 3.10. Let (X,7) and (Y,0) be two HSCfts’s. Then the following are
equivalent:

(a) f: X =Y is a wgc-map.
(b) F(A°) C (£(A))° for every A € IX.

Proof. (a) = (b). For every A € IX, we have 7(A°) > 0 by Remark 3.3(a) and hence
from (a), o(f(A°)) > 0. Hence by Theorem 3.6(b), f(A°) = (f(A°))° C (f(A4))°.
(b) = (a). Let 7(A) > 0 for A € IX. Then A = A° by Theorem 3.6. From (a)

we have
f(4) = f(A%) C (f(4))°.

Thus f(A) = (f(A))° by Theorem 3.5. Hence o(f(A)) > 0 by Theorem 3.6. Thus
f is a wgc-map. i
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4. SEVERAL TYPES OF FUZZY RS-COMPACTNESS

Azad [1] and Mukherjee & Ghosh [7] introduced the concepts of fuzzy semiopen
set, fuzzy regular open set, fuzzy regular closed set and fuzzy regular semiopen set
in a fuzzy topological space. In the following definition we introduce those concepts
in a HSCfts.

Definition 4.1. Let (X, 7) be a HSCfts and A € IX.

(a) A is called fuzzy semiopen if there exists U € IX with 7(U) > 0 such that
UCACU.

(b) A is called fuzzy regular open if A = (A)°.

(c) Ais called fuzzy regular closed if A = (A°).

(d) A is called fuzzy regular semiopen if there exists a fuzzy regular open set U such

that UC ACU.

Note that A is fuzzy regular open < A€ is fuzzy regular closed and that fuzzy
regular open set = fuzzy regular semiopen set = fuzzy semiopen set.

Theorem 4.2. Let (X, 7) be a HSCfts and A € IX. If A is a fuzzy regular semiopen
set, then
(a) A€ is fuzzy regular semiopen,
(b) A° = (4)°,
(c) 4 = (4°).
Proof. (a) Let A be a fuzzy regular semiopen set. Then there exists a fuzzy regular
open set U such that U C A C U. Since U*¢ is fuzzy regular closed, (U°)° is a fuzzy
regular open set such that (U¢)° C A° C U¢ = (U°)°. Thus A° is fuzzy regular
semiopen.

(b) Let A be a fuzzy regular semiopen set. Then there exists a fuzzy regular open
set U such that U € A CU. Hence A =U.
Since (A)° = U,

@¢ =U C 4° C () = ().

Thus A° = (A)°.

(c) Let A be a fuzzy regular semiopen set. Then A° is also a fuzzy regular
semiopen set from (a). From (b) we have (4°)° = ((A°))°. Hence (A)¢ = ((A°))° by
Theorem 3.7. Thus A = (A°). O
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Note that A° and A of a fuzzy regular semiopen set A are fuzzy regular open set
and fuzzy regular closed set, respectively.

Definition 4.3. (a) A HSCfts (X, 7) is called fuzzy compact if for every family
{A;:i€ J}in {A € IX : 7(A) > 0} covering X, there exists a finite subset Jy
of J such that (J;c;, 4i = 1x.

(b) A HSCfts (X, ) is called fuzzy nearly compact if for every family {4;:: € J} in
{A € I* : 7(A) > 0} covering X, there exists a finite subset Jy of J such that

Uses, ((4:)° = 1x.
(c) A HSCfts (X, 1) is called fuzzy almost compact if for every family {4; : ¢ € J}
in {A € IX : 7(A) > 0} covering X, there exists a finite subset Jy of J such that

Uieso (4i) = 1x.
(d) A HSCfts (X, ) is called fuzzy S-closed if for every fuzzy semiopen cover {4; :
i € J} of X, there exists a finite subset Jy of J such that {J,c; (4:) = Lx.

Note that fuzzy compactness = fuzzy near compactness = fuzzy almost com-

pactness and that fuzzy S-closedness = fuzzy almost compactness.

Ezample 4.4. Let X = N, the set of all natural numbers and let P, = {1,2,...,n}
and A, = xp, for each n € N. Define 7 : IX — I by
T(0x) =7(lx) =1,
n
Ap) =
T(4n) = =7
7(A) = 0 for all other 4 € IX.

for each n € N,

Then clearly, 7 is a HSCft on X. Note that (A,) = 1x, so ((4,))° = 1x for each
n € N. Hence (X, 7) is fuzzy nearly compact. But U321 4, = 1x, 1. e., {4, : n € N}
covers X and there exists no finite subset Ng of N such that UieNo A; = 1x. Thus
(X, 7) is not fuzzy compact.

Definition 4.5. (a) A HSCfts (X, 7) is called fuzzy RS-compact if for every fuzzy
regular semiopen cover {4; : ¢ € J} of X, there exists a finite subset Jy of J
such that (J;c 7, (4i)° = 1x.

(b) A HSCfts (X, ) is called fuzzy nearly RS-compact if for every fuzzy regular
semiopen cover {A; : ¢ € J} of X, there exists a finite subset Jy of J such that

Uies, ((A:))° = 1x.
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(c) A HSCfts (X, ) is called fuzzy almost RS-compact if for every fuzzy regular
semiopen cover {A; : 1 € J} of X, there exists a finite subset Jy of J such that

Uies, (4s) = 1x.

Note that fuzzy RS-compactness < fuzzy near RS-compactness, fuzzy RS-com-
pactness = fuzzy almost RS-compactness and that fuzzy RS-compactness = fuzzy
near compactness.

Ghosh [4] introduced the concept of a fuzzy extremally disconnected fuzzy topo-
logical space. In the following definition we introduce the concept of a fuzzy ex-
tremally disconnected HSCfts.

Definition 4.6. A HSCfts (X, 7) is called fuzzy extremally disconnected if T(A) > 0
for every A € IX with 7(A) > 0.

Theorem 4.7. A HSCfts (X, ) is fuzzy RS-compact if and only if for each family
{Ai i € J} of fuzzy reqular semiopen sets of X such that (;c ; A; = Ox, there exists
a finite subset Jo of J such that ;. j, (A;) = 0x.

Proof. Suppose that (X,7) is fuzzy RS-compact. Let {A; : 4 € J} be a family of
fuzzy regular semiopen sets of X such that [);c; A; = Ox. Then by Theorem 4.2,
{(4;)° : i € J} is a family of fuzzy regular semiopen sets of X such that (J;c ;(4:)° =
(Miey 4i)¢ = 1x. Since (X, ) is fuzzy RS-compact, there exists a finite subset Jo
of J such that Use s, ((A:))° = 1x. Hence ;¢ (4A) = (UiEJO((A,-)C)")C =0x.
Converse follows by reversing the previous arguments. |

Theorem 4.8. Let (X, 1) be a HSCfts. Then the following are equivalent:

(a) (X, 7') is fuzzy RS-compact.

(b) For each family {A; : i € J} of fuzzy regular open sets of X such that (\;c; A; =
Ox, there exists a finite subset Jo of J such that ;¢ Jo (4;) =0x.

(c) For each fuzzy regular closed cover {A; : i € J} of X, there exists a finite subset

Jo of J such that UieJo(Ai)o =1x.

Proof. (a) = (b): Since every fuzzy regular open set is fuzzy regular semiopen, it
follows directly from Theorem 4.7.

(b) = (a): Let {A4; : ¢ € J} be a family of fuzzy regular semiopen sets of X
such that N;cyA; = 0x. Since A; is a fuzzy regular semiopen set for each ¢ € J,

(A;) = ((A;)°) for each i € J by Theorem 4.2. Since {(A4;)° : i € J} is a family of
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fuzzy regular open sets of X such that [, ;(A:)° = Ox, by (b) there exists a finite
subset Jy of J such that

N @A) =) ((4)) =

i€Jo i€Jo
Thus (X, 7) is fuzzy RS-compact by Theorem 4.7.
(b) & (c): It is obvious. O

Theorem 4.9. A fuzzy extremally disconnected and fuzzy compact space is fuzzy
RS-compact.

Proof. Suppose that (X, 7) is a fuzzy extremally disconnected and fuzzy compact
space. Let {A; : i € J} be a fuzzy regular semiopen cover of X. Then there exists
a fuzzy regular open set U; such that U; C A; C (U;) for each ¢ € J. Since (X, 7) is

fuzzy extremally cCisconnected and U; = ((U5))° for each i € J, A; = (A;)° for each
i € J. Hence (X, 7) is fuzzy RS-compact since (X, ) is fuzzy compact. O

Definition 4.10. Let (X, 7) and (Y, 0) be two HSCfts’s. f: X — Y is called fuzzy
weakly open if f(A) C (f(A))° for every A € I* with 7(A4) > 0.

Note that wgc-map = fuzzy weakly open map.

Theorem 4.11. Let (X,7) and (Y,0) be two HSCfts’s. If f : X = Y is a fuzzy
weakly open and vgp-map, then f~1(A) is a fuzzy regular open set in X for every
fuzzy reqular open set A in'Y and also f~1(A) is a fuzzy regular closed set in X for
every fuzzy regular closed set A inY.

Proof. Let A be a fuzzy regular open set in Y. From Definition 4.1 and Theorem
3.6 we have o(A) > 0. Since f is a wgp-map, 7(f~1(4)) > 0.
Hence

“HA) = (FHA)° C (FHA))°
by Theorem 3.5 and Theorem 3.6.

Since f is fuzzy weakly open, f ((W)") C (f (mj))o Since f is a
wgp-map, (f(f-1(A4)))° C (f(f 1(A)))° € (A)° = A by Theorem 3.8. Hence
(F7I(A))° C f71(A). Thus f~*(A) is a fuzzy regular open set in X.

Let A be a fuzzy regular closed set in Y. Then A° is a fuzzy regular open set in
Y. By the previous result f~!(A°) = (f~1(A))¢ is a fuzzy regular open set in X.
Hence f1(A) is a fuzzy regular closed set in X. O
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Theorem 4.12. Let (X, 7) and (Y,0) be two HSCfts’s and let f : X — Y be a sur-
jective, fuzzy weakly open and wgp-map. If (X, 1) is fuzzy extremally disconnected,
then so is (Y,0).

Proof. Let A € IY with ¢(A) > 0. Then A = A° by Theorem 3.6. Hence 4
is a fuzzy regular closed set in Y. By Theorem 4.11, f~1(A) is a fuzzy regular

closed set in X i.e., f~1(4) = (f~1(A))°. Since X is fuzzy extremally disconnected

and 7((f7*(4))°) > 0, 7((f~1(A))°) > 0. From the surjectivity and fuzzy weak
openness of f we have

A= f(I71A) = H(UHA)) € (FUTH(A))°
= (f((f71(A)2)° = (F(f71(A))° = (4.
Hence A = (A)° and so o(A) > 0 by Theorem 3.6. Thus (Y, o) is fuzzy extremally

disconnected. O

Theorem 4.13. Let (X,7) and (Y,0) be two HSCfts’s and let f : X — Y be a
surjective, fuzzy weakly open and wgp-map. If (X,7) ts fuzzy RS-compact, then so
is (Y,0).

Proof. Let {A; : i € J} be a fuzzy regular closed cover of Y. By Theorem 4.11,
{f~Y(4;) : i € J} is a fuzzy regular closed cover of X. Since X is fuzzy RS-compact,
by Theorem 4.8 there exists a finite subset Jp of J such that | J;c ;, (f1(A))° = 1x.
From the surjectivity and fuzzy weak openness of f we have

y=f(U (f“i(Ai))°) = |J F((F7HA))°) € U (FFTAD)9))°

i€do i€do i€Jdo
= U (FG¢Han)” = U
i€Jo i€Jo
Hence J;¢ j, (4i)° = ly. Thus (Y, 0) is fuzzy RS-compact by Theorem 4.8. O

Theorem 4.14. A HSCfts (X, 1) is fuzzy almost RS-compact if and only if for each
family {A; : i € J} of fuzzy regular semiopen sets of X such that [;cy A = Ox,
there ezists a finite subset Jo of J such that [, (A:)° = Ox.

Proof. Suppose that (X, 7) is fuzzy almost RS-compact. Let {A4; : i € J} be a family
of fuzzy regular semiopen sets of X such that (), ; A; = Ox. Then {(4;)°:i € J} be
a family of fuzzy regular semiopen sets of X such that {J;c ;(4:)® = (s 4i)° = 1x
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by Theorem 4.2. Since (X, 7) is fuzzy almost RS-compact, there exists a finite subset
Jo of J such that UieJ0 (A;)e = 1x.

Hence
(N (4)° = (| (4)9)° = 0x
i€Jg i€Jo
Converse can be proved similarly. O

Theorem 4.15. Let (X,7) be a HSCfts. Then the following are equivalent:

(a) (X,7) is fuzzy almost RS-compact.

(b) For each family {A; : i € J} of fuzzy regular open sets of X such that (Vo ; A =
0x, there exists a finite subset Jy of J such that niEJo A; =0x.

(c) For each fuzzy regular closed cover {A; : i € J} of X, there exists a finite subset
Jo of J such that UieJo A, =1x.

Proof. (a) = (b). This follows directly from Theorem 4.14.

(b) = (a). Let {A; : i € J} be a family of fuzzy regular semiopen sets of X such
that (),c; Ai = Ox. Since 4; is a fuzzy regular semiopen set for each i € J, (4;)° is
a fuzzy regular open set for each i € J.

Hence {(4;)° : i € J} is a family of fuzzy regular open sets of X such that
MNics(4i)° = 0x. By (b), there exists a finite subset Jo of J such that (), ; (4:)° =
Ox. By Theorem 4.13, (X, 7) is fuzzy almost RS-compact.

(b) & (c). This is straightforward. O

Theorem 4.16. A HSCfts (X, 7) is fuzzy almost RS-compact if and only if (X, 1)

s fuzzy S-closed.

Proof. Let (X, T) be fuzzy S-closed. Since every fuzzy regular semiopen set is fuzzy
semiopen set, (X, 7) is fuzzy almost RS-compact.

Conversely, suppose that (X, 7) is fuzzy almost RS-compact. Let {A; : i € J} be
a fuzzy semiopen cover of X. Then there exists U; € IX with 7(U;) > 0 such that
U, CA; C W for each ¢ € J. We can easily show that m is fuzzy regular closed
for each i € J.

Since U; C A; C (U;) for each i € J, (U;) C (A4;) € ((Us)) = (U;) for each i € J.

Thus (A;) = (U;) for each ¢ € J. Thus {(A4;) : ¢ € J} is a fuzzy regular closed cover
of X. Since (X, 7) is fuzzy almost RS-compact, by Theorem 4.15 there exists a finite

subset Jo of J such that {J;c, (4i) = 1x.
Hence (X, 7) is fuzzy S-closed. O
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Theorem 4.17. A fuzzy extremally disconnected and fuzzy almost compact space is
fuzzy almost RS-compact.

Proof. Let (X, 7) be a fuzzy extremally disconnected and fuzzy almost compact
space and let {A; : i € J} be a fuzzy regular semiopen cover of X. Then there

exists a fuzzy regular open set U; such that U; C A; C (U;) for each i € J. Since
(X, ) is fuzzy extremally disconnected and U; = ((U;))° for each i € J, A; = (4;)°
for each 1 € J. Thus {A4; : ¢ € J} is a family in {A € I* : 7(A) > 0} covering X.
Since (X, 7) is fuzzy almost compact, there exists a finite subset Jy of J such that
Uieso (A9) = 1x.

Hence (X, 7) is fuzzy almost RS-compact. a

Theorem 4.18. Let (X,7) and (Y,0) be two HSCfts’s and let f : X — Y be a
surjective, fuzzy weakly open and wgp-map. If (X,7) is fuzzy almost RS-compact,
then so is (Y,0).

Proof. Let {A; : ¢ € J} be a fuzzy regular closed cover of Y. By Theorem 4.11,
{f~Y(A;) : i € J} is a fuzzy regular closed cover of X. Since (X,7) is fuzzy al-
most RS-compact, by Theorem 4.15 there exists a finite subset Jy of J such that
Uieg, 71 (4:) = 1x. From the surjectivity of f we have

ly =f(J @) = | 14 = | 4

i€y i€Jy i€Jo
Hence | J;¢ j, Ai = ly. Thus (Y, o) is fuzzy almost RS-compact by Theorem 4.15. O
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