The Isolation of Bacillus sphaericus 366M-9 Producing New Cephalosporin-C Deacetylase (CAH) and its Enzymatic Characterization

신규 Cephalosporin-C Deacetylase(CAH) 생산 균주인 Bacillus sphaericus 366M-9의 선발 및 그 효소학적 특성

  • 이승훈 (건국대학교 미생물공학과) ;
  • 권태종 (건국대학교 미생물공학과) ;
  • 이동희 (건국대학교 미생물공학과)
  • Published : 2004.09.01

Abstract

Several microorganisms (esterase-producing group) were isolated by the solid selective media containing-naphtylacetate. Among them, strain 366M-9 having a high activity of cephalosporin-C deacetylase (CAH; EC 3.1.1.41) was selected. The strain 366M-9 was identified as Bacillus sphaericus on the basis of morphological, physiological, and biochemical characteristics. The production of CAH reached at maximum value after 32 hrs, when cultivated in the optimal medium containing dextrin 2.5%, peptone 2.5%, sodium chloride 0.5%, dipotassium phosphate 0.25%, ferrous sulfate 0.02%, and 7-ACA 0.1% at $30^{\circ}C$ with initial pH 6.0. The CAH was purified by 3 steps with ammonium sulfate precipitation, adsorption chromatography on hydroxyapatite column, and Sephadex G-200 gel chromatography. The final enzyme preparation was homogeneous as judged by the analysis of SDS-PAGE and HPLC. Optimum temperature and pH for CAH activity were $50{\circ}C$ and around 7.0, respectively. And the enzyme was stable at pH 6.0~8.0, up to $50^{\circ}C$. The Michaelis-Menten constants ($K_{m}$ ), $V_{max}$ were 0.87 mM and 1.22 unit/ml, respectively.

토양으로부터 강력한 CAH activity를 갖는 균주를 분리하여, 생화학적, 배양학적, 전자현미경 동정을 한 결과, Bacillus sphaericus로 확인되었으며, 이를 B. sphaericus 366M-9로 명명하였다. 또한 이 균으로부터 최초로 cephalosporin-C deacetylase(CAH)를 분리 정제하였다. 정제수율은 약 7.5% 였으며, B. sphaericus 366M-9에서 분리한 CAH-9의 최적활성 온도는 $50^{\circ}C$였으며, 효소안정 온도구간은 30~$50^{\circ}C$이다. 또한 최적 활성 pH는 7.0이었으며, 효소안정 pH구간은 pH 6.0~8.0으로 90% 이상의 잔존 활성도를 나타내었다. 효소반응속도에 미치는 기질의 영향에서는 $K_{m}$ 값은 0.87 mM 이며,$ V_{max}$는1.22 unit/ml이었다.다.

Keywords

References

  1. Methods Enzymol. v.43 Cephalosporin acetylesterase (Bacillus subti lis) Abbott, B. J.;D. S. Fukuda https://doi.org/10.1016/0076-6879(75)43139-1
  2. Appl. Microbiol. v.30 Physical properties and kinetic behavior of a cephalosporin acetylesterase produced by Bacillus subtilis Abbott, B. J.;D. S. Fukuda.
  3. Ferm. and Bioeng. J. v.77 no.1 Purification, characterization and partial amino acid sequences of a novel cephalosporin-Cdeacetylase from Bacillus subtilis Akio takimoto.;Kenji mitsushima.;Shigeo yagi.;Takayasu sonsyama https://doi.org/10.1016/0922-338X(94)90201-1
  4. Critical Reviews in Biotech. v.18 Recent trends in enzymatic conversion of cephalosporin-C to 7-aminocephalosporanic acid(7-ACA) Parmer, A.;H. Kumar.;S. S. Marwaha.;J. F. Kennedy https://doi.org/10.1080/0738-859891224194
  5. Critical Reviews in Biotech. v.18 Cephalosporin-C production by Cephalosporium acremonium Demian, A. L.;J. Zhang https://doi.org/10.1080/0738-859891224176
  6. Microbiol. Biotech. J. v.10 Gene cloning and expression of cephalosporin-C deacetylase from Bacillus sp. KCCM10143 Choi, D.-H.;Y.-D. Kim;L.-S. Chung;S.-H. Lee;S.-M. Kang;T.-J. Kwon;K.-S. Han
  7. Current Microbiol. v.28 Sensitivity of spores and growing cells of Bacillus thuringiensis var iaraeliensis and Bacillus sphaericus to osmotic variations Cucchi A.;C. S. Rivas. https://doi.org/10.1007/BF01569058
  8. Nature v.199 Microbial degradation of cephalosporin C Demian, A. L.;R. B. Walton;J. F. Newkirk;I. M. Miller. https://doi.org/10.1038/199909a0
  9. Agric. Biol Chem. v.39 Deacetylcephalosporin C formation by cephalosporin C acetylhydrolase of Cephalosporium acremonium mutant Fujisawa, Y.;H. Shirafuji;T. Kanzaki https://doi.org/10.1271/bbb1961.39.1303
  10. J. Membrane Science v.157 Liquid membrane extraction of cephalo sporin-C from fermentation broth Sahoo, G. C.;N. N. Dutta.;N. N. Dass https://doi.org/10.1016/S0376-7388(98)00382-2
  11. Antimicrob. agents, Chemother. v.9 Enzymatic hydrolysis of cephalosporin-C by extracellular acetyihydrolase of Cephalosporium acremonium Hinnen, A.;J. Nuesch. https://doi.org/10.1128/AAC.9.5.824
  12. Appl. Microbiol. v.16 Formation of desacetyl cephalosporin-C in cephalosporin C in cephalosporin C fermentation F. M. Hurber;R. H. Baltz;P. G. Caltrider
  13. Biochem. J. v.81 Deacetyl cephalosporin C Jeffery, J. D'A.;E. P. Abraham;G. G. F. Newton https://doi.org/10.1042/bj0810591
  14. Enzyme Microbial Technol. v.17 Cephalosporin C: Mode of action and biosynthetic pathway Weil, J.;J. Miramonti;M. R. Ladisch https://doi.org/10.1016/0141-0229(94)00083-4
  15. J. Biotechnology v.48 Effect of oxygen on the respiratory system and cephalosporin-C production in Acremonium chrysogenum Kozma, J.;L. Karaffa https://doi.org/10.1016/0168-1656(96)01400-9
  16. Appl. Environ. Microbiol. v.61 Gene cloning, nucleotide sequcnce, and expression of a cephalosporin-C deacetylase from Bacillus subtilis Kenji Mitsushima;Akio Takimotm;Takayasu Sonoyama;Shigeo Yagi
  17. Biochem. Biophy. Acta v.485 Effect of carrier morphology and buffer diffusion on expression of enzymatic Konrcny, J.;W. Voser https://doi.org/10.1016/0005-2744(77)90172-3
  18. J. Med. Chem. v.11 Chemistry of cephalosporin antibiotics.XI. Preparation and properties of deacetylcephaloglycin and its lactone Kukolja, S. https://doi.org/10.1021/jm00311a035
  19. Biochem. Biophys. Ar. v.111 Effect of metal ions on Hog liver esterase Keay, L.;E. M. Crook. https://doi.org/10.1016/0003-9861(65)90244-4
  20. J. Biotechnol. v.58 Cloning, sequencing and expression in E.coli of a D-amino acid oxdase cDNA from Rhodotorula gracilis active on cephalosporin C Pollegioni, L.;G. Molla;S. Campaner;E. Martegani;M. S. Pilone https://doi.org/10.1016/S0168-1656(97)00142-9
  21. Appl. Microbiol. v.47 Metabolic response of Bacillus sphaericus 1593M for dual substrate limitation in continuous and totalcell reteneion cultures Meenakshisundaram, R.;R.K. Fernando;K. Jenny;R. Sachidanandham;K. Jayaraman
  22. Appl. Environ. Microbial. v.63 Purification and characterization of a cephalosporin esterase from Rhodosporidium toruloides Michael, P.;M. Sean;Tonzi(et al.)
  23. J. Am. Chem. Soc. v.91 Chemistry of cephalosporin antibiotics. XV. Transformations of penicillin sulfoxide.A synthesis of cephalosporin compounds Morin, R. B.;B. G. Jackson;R. A. Muller;E. R. Lavagnino;W. B. Scanlon and S. L. Andrews https://doi.org/10.1021/ja01034a023
  24. Biochem. J. v.89 The formation of metabolites from cephalosporin compounds O'Callaghan, C. H.;P. W. Muggleton. https://doi.org/10.1042/bj0890304
  25. Enzyme Microbial Tachnol. v.17 Immobilization of D-amino acid oxidase from different yeast: Characterization and application in the deamination of cephalosporin-C Golini, P.;D. Bianchi;E. Battistel;P. Cesti;R. Tassinari https://doi.org/10.1016/0141-0229(94)00027-1
  26. Process Biochem. v.34 Studies on cephalosporin-C production in air Iife reactor using different growth modes of Cephalosporium acremonium Srivastava, P.;S. Kundu https://doi.org/10.1016/S0032-9592(98)00059-4
  27. Biotech. Lett. v.16 Medium optimization for the production of penicillin V acylase from Bacillus sphaericus Pundle, A. V.;H. Siva raman. https://doi.org/10.1007/BF01022400
  28. Appl. Microbiol. Biotechnol. v.47 Metabolic response of Bacillus sphaericus 1593N for dual-substate limitation in continuous and total-cell-retention cultures Meenakshisundaram, S.;G. Suresh;R. K. Fernando;K. Jenny;R. Sachidanadham;K. Jayaraman https://doi.org/10.1007/s002530050972
  29. J. Biotechnol. v.74 Development of tailor-made glycidyl methacrylate divinyl benzene copolymer for immobilization of D-amion acid oxidase from Aspergillus species stain 020 and its application in the bioconversion of cephalosporin-C Mujawar, S. K.;A. Kotha;C. R. Rajan;S. Ponratham;J. G. Shewale.
  30. Endospore-forming gram-positive rods and cocci Bergy's manual of systematic bacteriology v.2 Sneath(et al.)
  31. Bacteriol. J. v.114 Isolation of two acetyl esterase from extracts of Bacillus subtilis Thomas B. Higerd;John spizizen
  32. J. Ferm. Bioeng. v.85 Purification and properties of cephalosporin-C deacetylase from bioconverision of 7-aminocephalosporanic acid derivatives Yasuyoshi S.;A.Tetsuya;A Motoi;O. Yohko;Y. Keizo;T. Yoshiki;K. Nobuo https://doi.org/10.1016/S0922-338X(97)80353-4
  33. Biochem. v.6 The catalytic versatility of erythrocyte carbonic anhydrase, Kinetic studies of the enzyme, catalyzed hydrolsis of p-Nitrophenyl acetate Pocker, Y.;J. T. Stone. https://doi.org/10.1021/bi00855a005