Isolation of an Acinetobacter junii SY-01 Strain Producing an Extracellular Lipase Enantioselectively Hydrolyzing Itraconazole Precursor, and Some Properties of the Lipase

  • Yoon, Moon-Young (Life Science Division, Korea Institute of Science and Technology) ;
  • Shin, Pyong-Kyun (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Han, Ye-Sun (Life Science Division, Korea Institute of Science and Technology) ;
  • Lee, So-Ha (Life Science Division, Korea Institute of Science and Technology) ;
  • Park, Jung-Keug (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Cheong, Chan-Seong (Life Science Division, Korea Institute of Science and Technology)
  • Published : 2004.02.01

Abstract

Water-sludge bacteria were screened to find a lipase enantioselectively hydrolyzing itraconazole precursor, which is well known as the starting material of antifungal drug agents. A bacterial strain was isolated and identified as Acinetobacter junii SY-01. After the strain was cultivated, the enzyme was purified 39.4-fold using ultrafiltration and gel filtration through a Sephadex G-100 chromatographic column and the activity yield was 34.9%. The molecular weight of the enzyme was about 40 kDa, as measured by SDS-PAGE, and the optimum pH was 7.0- 9.0 and stable at pH 6.0- 9.0. The optimum temperature was 45- $5^{\circ}C$, and 73% of the enzymes activity remained after incubation at 70% for 1 h. Enzyme activity was enhanced by gall powder, sodium deoxycholate, a cationic detergent Tween 80, and a non-ionic detergent Triton X-100, but was markedly inhibited by metal ions such as $Hg^{2+},Cu^{2+},Ni^{2+}/,Ca^{2+}$, and an anionic-surfactant sodium dodecylsulfate. The $K_{m}$ values for (R)- and (S)-enantiomers of the itraconazole precursor were 0.385 and 21.83 mM, respectively, and the $V_{max} values ($\mu$Mㆍmin^{-1}.)$ were 6.73 and 6.49, respectively. The acetyl group among the different acyl moieties of itraconazole precursor showed the highest enantioselectivity for the hydrolysis by the Acinetobacter junii SY-01 lipase, and the lipase from Acinetobacter junii SY-01 displayed better enantioselectivity than that of commercially available lipases and esterases.

Keywords

References

  1. Ariens, E. J. 1993. Nonchiral, homochiral and composite chiral drugs. Trends Biochem. Sci. 14: 68-76
  2. Beata, P., R. Justyna, and J. Plenkiewicz. 1998. Lipasecatalyzed kinetic resolution of the racemic mixtures of 1- aryloxy-3-nitrato-and 1-aryloxy-3-azido-2-propanols. Synthetic Communications 28: 4355-4364
  3. Borman, S. 1992. FDA issues flexible policy on chiral drugs. Chem. Eng. News 6: 5-6
  4. Chen, C. H., Y. Fujimoto, G. Girdaukas, and C. J. Sih. 1982. Quantitative analysis of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 104: 7294-7299
  5. Christopher, R., J. C. Raymond, S. A. Joseph, P. Victor, W. H. Frederick, G. Randolph, and C. Michel. 1997. Process development for the production of the (S)-acid precursor of a novel elastase inhibitor (L-694, 458) through the lipasecatalyzed kinetic resolution of a b-lactam benzyl ester. J. Ferm. Bioeng. 83: 48-53
  6. Deutsch, D. H. 1991. Chiral drugs: The coming revolution. CHEMTECH 3: 157-159
  7. Eduardo, G. U., F. Rebolledo, and V. Gotor. 2001. Study of the enantioselectivity of the CAL-B-catalyzed transesterification of a-substituted $\alpha$-propylmethanols and a-substituted benzyl alcohols. Tetrahedron: Asymmetry 12: 3047-3052
  8. Federsel, H. J. 1993. Drug chirality-scale-up, manufacturing, and control. CHEMTECH 12: 24-33
  9. Gerhardt, P. 1981. Manual of Methods for General Bacteriology, pp. 418. American Society for Microbiology, Washington, U.S.A
  10. Gray, N. M. and R. L. Woosley. 1995. Methods and compositions of (2R, 4S) itraconazole for treating fungal yeast and dermatophyte infections. US Patent No. 5,474,997
  11. Hou, C. T. and T. M. Johnston. 1992. Screening of lipase activities with cultures from the agricultural research services culture collection. JAOACS 69: 1088-1097
  12. Hutt, A. J. and J. O’Grady. 1996. Drug chirality: A consideration of the significance of the stereochemistry of antimicrobial agents. J. Antimicrob. Chemotherap. 37: 7-32
  13. Jones, J. B. 1986. Enzymes in organic synthesis. Tetrahedron 42: 3351-3403 https://doi.org/10.1016/S0040-4020(01)87306-3
  14. Kaoru, N., K. Masamichi, and O. Atsuyoshi. 1995. Structure of solvent affects enantioselectivity of lipase-catalyzed transesterification. Tetrahedron 51: 8799-8808
  15. Kim, C. S., I. S. Lee, N. H. Chung, and W. G. Bang. 2001. Optical resolution of DL-pipecolic acid by fermentation using Pseudomonas sp. PA09. J. Microbiol. Biotechnol. 11: 217-221
  16. Kim, Y. H., C. S. Cheong, S. H. Lee, S. J. Jun, K. S. Kim, and H. S. Cho. 2002. Lipase-catalyzed resolution of 1,3-dioxolane derivatives: Synthesis of a homochiral intermediate for antifungal agents. Tetrahedron: Asymmetry 13: 2501-2508
  17. Kirchner, G., M. P. Scollar, and A. M. Klibanov. 1985. Resolution of racemic mixtures via lipase catalysis in organic solvents. J. Am. Chem. Soc. 107: 7072-7076
  18. Laemmli, U. K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  19. Lee, E. G. and B. H. Chung. 2000. Chiral resolution using enzymes. Korean J. Biotechnol. Bioeng. 15: 415-422
  20. Lee, E. Y. and H. S. Kim. 2001. Development of hollowfiber reactor system for the production of chiral 1,2-epoxy-7- octene by microbial enantioselective hydrolysis reaction. Korean J. Biotechnol. Bioeng. 16: 259-263
  21. Lowry, O. H., N. J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275
  22. Margolin, A. 1993. Enzymes in the synthesis of chiral drugs. Enzyme Microb. Technol. 15: 266-280
  23. McCullough, J. R., C. H. Senanayake, G. J. Tanoury, Y. Hohg, and P. Koch. 1999. 2R, 4S, R, S- and 2S, 4R, R, SHydroxyitraconazole. US Patent No. 5,952,502
  24. Matsumae, H., M. Furui, T. Shibatani, and T. Tosa. 1994. Production of optically active 3-phenylglycidic acid ester by the lipase from Serratia marcescens on a hollow-fiber membrane reactor. J. Ferment. Bioeng. 78: 59-63
  25. Michael, A. J., P. L. David, and A. B. Lynne. 1995. Enantioselective hydrolysis of ethyl 2-hydroxyalkanoates by an extracellular esterase from a Bacillus sphaericus strain. Enzyme Microb. Technol. 17: 175-179
  26. Mohapatra, S. C. and J. T. Hsu. 1999. Optimizing lipase activity, enantioselectivity, and stability with medium engineering and immobilization for b-blocker synthesis. Biotech. Bioeng. 64: 213-220 https://doi.org/10.1002/(SICI)1097-0290(19990720)64:2<213::AID-BIT10>3.0.CO;2-U
  27. Niklas, O., C. Orrenius, A. Mattson, T. Norin, and K. Hult. 1996. Kinetic resolutions of amine and thiol analogues of secondary alcohols catalyzed by the Candida antarctica lipase B. Enzyme Microb. Technol. 19: 328-331 https://doi.org/10.1016/S0141-0229(96)00031-2
  28. Santoniello, E., P. Ferraloschi, P. Grisent, and A. Monzouchi. 1992. The biocatalytic approach to the preparation of enantiomerically pure chiral building blocks. Chem. Rev. 92: 1071-1140
  29. Seu, Y. B., Y. C. Su, and K. D. Lee. 1996. Preparation of (S)- 3-acetoxy-2-methylpropanol with lipase. Kor. J. Appl. Microbiol. Biotechnol. 24: 213-216
  30. Shon, J. K., D. Tian, D. Y. Kwon, C. S. Jin, and T. J. Lee. 2002. Degradation of fat, oil, and grease (FOGs) by Lipaseproducing bacterium Pseudomonas sp. strain D2D3. J. Microbiol. Biotechnol. 12: 583-591
  31. Jung, W. H., H.-K. Kim, C.-Y. Lee, and T.-K. Oh. 2002. Biochemical properties and substrate specificity of lipase from Staphylococcus aureus B56. J. Microbiol. Biotechnol. 12: 25-30
  32. Ahn, J. O., H. W. Jang, H. W. Lee, E. S. Choi, S. J. Haam, T. K. Oh, and J. K. Jung. 2003. Overexpression of thermoalkalophilic lipase from Bacillus stearothermophilus L1 in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 13: 451-456
  33. Tietz, N. W. and E. A. Fiereck. 1966. A specific method for serum lipase determination. Clin. Chim. Acta 13: 352-355