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Abstract More than twenty years have passed since the
approval of the first recombinant DNA product for therapeutic
use (recombinant human insulin, 1982). However, the
biotechnology industry is still facing a shortage of manufacturing
capacity due to the increasing demand of therapeutic proteins.
This demand has prompted the search for a growing number
of biological production systems but, nevertheless, the Gram-
1egative bacterium Escherichia coli remains one of the most
attractive production hosts. This review highlights the most
‘mportant features and developments of plasmid vector design,
2mphasizing the different reported strategies for improving
‘he expression and secretion of heterologous proteins using
“he cellular machinery of E. coli.
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The Gram-negative bacterium Escherichia coli has been
the favored host for the purpose of recombinant protein
production [2, 84, 196]. This is due to its ability to grow
rapidly and at high density on inexpensive substrates,
its well-characterized genetics, and the availability of an
increasingly large number of cloning vectors and mutant
host strains [8,76]. This organism has the ability to
accumulate many recombinant gene products to at least
20% of the total cell protein [133] and, in some cases, to
translocate them from the cytoplasm to the periplasm [35].

Proteins like interferons, interleukins, growth hormones,
and human serum albumines have been successfully expressed
in E. coli [97], although this recombinant system cannot be
used to produce some large complex proteins, or proteins
that require post-translational modification to become
biologically active. The expression of complex proteins
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such as those involving extensive disulfide bond formation
requires new approaches in terms of controlled expression
systems. Transcriptional control is an effective way to
attain graded expression levels, and new promoters are
being exploited, with advantages in terms of inducibility
and transcriptional activity, towards an optimization of cell
factory resources.

Significant progress has been made in the expression
and in vivo folding of mammalian proteins in E. coli
[153, 194], and its secretion capacity is being explored with
fruitful results [47, 48, 100, 131, 199]. New applications
like the synthesis of peptide nucleic acids [125] and the
production of recombinant peptides [50, 117] are proof of
the renewed interest in this bacterium, suggesting that it
will remain one of the most widely used expression hosts
in the near future.

The successful production of recombinant proteins in E.
coli depends on a great number of factors which can be
grouped under four major determinants: the host strain, the
type of expression vector, the cultivation conditions, and
the purification of the target gene product (Fig. 1).

Plasmid Vectors

The term “plasmid” was introduced in 1952 as a generic
term for any extrachromosomal genetic element [93]. E.
coli plasmids have traditionally been used as expression
vectors for the overproduction of proteins.

In general, a prokaryotic expression vector contains a
set of genetic elements that affect both transcriptional and
translational steps of protein production [62], therefore,
optimal configuration of these elements should be pursued.
The essential architecture of an expression vector includes
a promoter, a ribosome binding site (RBS), a start codon, a
coding sequence for the target protein, a transcription
terminator, an origin of replication, and additionally, it may
contain a selective marker. The incorporation of selection
schemes into the vector, like the use of antibiotic resistance
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Fig. 1. Factors influencing recombinant protein production in Escherichia coli.

genes, has been widespread for many years [154]. The
problem associated with antibiotic selection in multicopy
plasmids is that the selection agent may be decomposed,
deactivated, or tightly bound to the product of the selection
gene. Cells with a high content of selection gene reduce
the concentration of the antibiotic, thus lowering its effect.
Multiple additions of antibiotics during fermentation can
solve this problem, however, this solution is not practical
in large-scale processes due to its cost and also due to
product contamination by antibiotics [6, 37].
Plasmid Copy Number. Multicopy plasmids have been
extensively used as vectors for recombinant protein
expression. It is known that the amount of a gene product
synthesized by a cell can be enhanced by increasing the
copy number of the plasmid harboring the gene [65].
Theoretically, the higher the copy number of a plasmid that
contains a target gene, the higher will be the gene dosage
effect [32]. On the other hand, it is known that the increase
in protein synthesis from low to high-copy plasmids is not
always proportional to the copy number increase [85, 163].
Although raising the copy number is an effective strategy
for increasing gene expression, particularly at low expression
levels [109], the plasmid metabolic burden may also
contribute to gene expression limitations [24, 37].

There are some situations in which protein expression at
very high levels might be deleterious (e.g. when periplasmic

secretion is the goal) and, in these cases, either a small
number of gene copies cloned in the chromosome [7, 25]
or low-copy expression vectors may be sufficient or even
desirable [176]. Low-copy plasmids may have a number of
advantages over high-copy plasmids such as tight control
of gene expression, the ability to replicate large pieces of
DNA, and low metabolic burden on the host strains [24].

The origin of replication contained in a vector governs
the plasmid copy number. However, it has been reported
that some physiological states, like the stringent response
[49], or even the cell growth rate [39, 96], may also influence
plasmid replication.

Plasmid stability is also a key issue in recombinant
protein production and, although naturally occurring E. coli
plasmids are extremely stable, engineered expression vectors
are often lost in the absence of a selective pressure [28,
147, 158, 172], causing significant reductions of production
yields [5].

Transcriptional Regulation. Transcriptional regulation
is of major importance in recombinant protein production
and the choices to be made at this keystone level are
crucial to achieve the adequate expression. In the early
days of recombinant protein production, strong promoters
were used in order to maximize protein expression.
However, for production strategies involving protein
secretion to the periplasm the expression rate should be



Table 1. Example of promoters that can be used for high-level
expression of recombinant proteins in E. coli; adapted from

[5, 62, 103].

2romoter Regulator  Induction Reference
araBAD araC L-Arabinose {77, 161]

ost-1 ppGpp Glucose starvation ~ [188]

cspA - Low temperature [118, 190, 191]
lac lacl lacl?  TPTG, allolactose [48, 104, 131]
Ipp - Constitutive [57,178]
malK crp, cAMP  Maltose [19,111]

aar Jfar Anaerobiosis [61,94]

phoA phoB, phoR Phosphate starvation [86, 113]
proU - Osmolarity [79,107]
Protein A - Constitutive [108, 110]
recA lexA Nalidixic acid [88,99]

uspA and uspB  fadR,THF  ppGpp [109, 111, 136}
tac lacl, lacl’  TPTG, allolactose [95, 145]

frc lacl, lacl’  TPTG, allolactose [11,74, 194]
trp trpR Tryptophan starvation [26, 197]

T7-lac operator lacl PTG [12, 100, 153]

Abreviations: IPTG, Isopropyl-B-D-thiogalactopyranoside.

optimized rather than maximized [111, 162]. When post-
translational modifications such as the formation of
disulfide bonds are necessary for biological activity, the
expression rate must be fine-tuned with, for instance, the
co-expression of chaperones [77, 129, 153].

Promoters. The promoter key elements are located at
-35 and - 10 regions [45, 146]. A comparison of promoter
sequences has shown a strong homology in these regions
among most of E. coli promoters, evidencing their role
in transcription initiation. Furthermore, it has been
demonstrated that the distance between these two regions
is also relevant [28].

A large number of promoters can be used for recombinant
protein expression [152], and some are listed in Table 1.
Several criteria are used to select an appropriate promoter
for the expression of a recombinant protein; namely,
promoter strength, leakage, inducibility, as well as economical
considerations [62, 103]. If inclusion body formation is
intended, a strong promoter capable of recombinant
protein production in excess of 10-30% of the total cell
protein should be used. However, this promoter should
display a minimal basal transcriptional activity [55]. A
highly repressible promoter is of great importance for
minimizing the metabolic burden on the host strain prior to
the production phase, particularly if the protein of interest
is toxic or detrimental to cell growth. If protein secretion is
desired, then the expression rates must be optimized to
prevent the saturation of E. coli transport machinery
[111, 145]. Therefore, in such a case, the promoter strength
should be adequate for the export capacity of the target
protein in a selected host strain. For low expression rates,
constitutive promoters may be a good option, however, if
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toxic proteins are to be produced, then induced promoters
are preferred. In all cases, economical considerations and
ease of induction are key factors for promoter choice.
Terminators: Transcriptional terminators determine the
points where the complexes formed by mRNA, RNA
polymerase, and DNA dissociate, thereby ending transcription.
When properly placed downstream of a coding sequence,
these elements prevent transcription through another promoter
located downstream of the coding sequence [5] and can
even inhibit transcription from this second promoter
(promoter occlusion).

Efficient termination stabilizes mRNA with positive
effects on the expression level. Most expression vectors
contain one or several terminators like the T1 and T2,
derived from the rrnB rRNA operon of E. coli [62, 103].
Translational Features. The mRNA 5' untranslated
sequence must contain the ribosome binding site
(approximately 54 nucleotides between positions -35 (£2)
and +19 to +22 of the mRNA coding sequence). Within
this region, the Shine-Dalgarno sequence (UAAGGAGG)
located 5 to 13 bases upstream of the start codon is
essential for the interaction with the 3' end of 16S rRNA
during translation initiation. Efficient start codons are
AUG, GUG, and UUG, with AUG being the most
frequently used start codon in E. coli [5]. Bacterial
translation is initiated by N-formylmethionine, which is
deformylated during synthesis but not necessarily removed.
Removal is done by an endogenous methionine aminopeptidase
but this process is dependent on the side chain of the
second amino acid [103]. Since the starting methionine is
not always removed, N-terminal authenticity is not
guaranteed and reduction of biological activity of the
expressed protein may occur in some cases [167].

The presence of a stop codon in the mRNA is of great
importance in translational termination. Peptide chain
liberation is mediated by at least two release factors that
recognize the three termination codons. Release factor 1
recognizes UAA and UAG, and release factor 2 recognizes
UAA and UGA {122]. Most expression vectors contain all
three stop codons in different reading frames to prevent
ribosome skipping [154]. The three stop codons differ in
their termination efficiencies, and there is a strong bias
towards the use of UAA in highly expressed genes.
Furthermore, it has been demonstrated that the identity of
the nucleotide immediately following the stop codon
strongly influences the efficiency of translational termination
in E. coli. The most efficient terminator sequence for this
host organism is UAAU [103].
mRNA Stability. The secondary structure of a single-
stranded mRNA is related to its tertiary structure and
function. Folding of mRNA molecules is thermodynamically
controlled [156, 195] and can influence protein expression
in two ways. The formation of stem-loop structures and
other localized conformations may influence the half-lives
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of certain mRNA molecules, with obvious implications in
expression [46]. On the other hand, the secondary structure
that a transcript adopts has been shown to play important
functional roles in translation of some genes [139, 166],
particularly regarding the accessibility of the start codon
and Shine-Dalgarno sequence [23].

The degradation of mRNA by host cell RNases is an
important factor in post-transcriptional control of recombinant
protein expression [163, 187], and it has been reported
[24] that mRNA stabilization is one efficient strategy
to increase protein expression at all translational levels.
Several RNases participate in the degradation process
including endonucleases (e.g. RNase E, RNase K, and
RNase III) and 3' exonucleases [164]. The stabilization of
mRNA can be achieved in three ways:

1) By engineering sequences in the 5' untranslated region,
it is possible to obtain changes in the overall secondary
structure of the mRNA, thus improving the stability of the
transcript [143]. Furthermore, additional stabilizing elements
such as omp-like leader sequences [41] or RNaselll
cleavage sites can be introduced. It has been demonstrated
[132] that processing by RNaselll can increase the half-life
of mRNA 3-4 fold.

ii) By optimization of the 3' untranslated sequences of
the mRNA, which may induce the formation of stem-loop
structures, thereby blocking the exonucleolytic degradation
of the transcript from the 3 terminus [103] or providing
accessory protein binding sites that stabilize the mRNA
[67].

iii) By using host strains with mutations on the rnc or
rmb genes (encoding for RNase III and RNase II), thus
minimizing internal cleavage of mRNA [41] and thereby
increasing protein expression.

Codon Usage. Codon usage in E. coli is extremely
biased as a consequence of a nonrandom usage of
synonymous codons [62]. The effect of substitution of rare
codons in protein expression has been extensively studied,
but definitive conclusions are difficult to draw. Negative
effects of the presence of rare codons in the coding
sequence have been reported in the expression of several
proteins [18, 40, 81, 144, 165, 198]. The explanations found
for this negative effect may be cither the relatively low
abundance of certain transfer RNA species [14, 43, 72, 73]
or the different energies of codon-anticodon pairing [54].
The location of rare codons in the transcript [29, 51] and
the transcriptional rate [142] have also been reported to
influence translation from rare codons. Although codon
optimization yielded higher expression levels in a variety
of situations [66, 102, 192, 193], it has been proposed that
gene expression is usually not limited by rare codons [68],
and that the abundance of transfer RNAs is not correlated
with codon usage [17]. Some authors have also suggested
that the use of rare codons in a gene is a way to naturally
slow down the elongation of a peptide chain, thereby

allowing the proper folding of specific regions in the
nascent peptide [58].

However, for a particular recombinant protein expression
system, a codon optimization procedure may be beneficial,
not only because the percentage of rare codons is
diminished, but also because the optimized sequence may
allow the formation of mRNA secondary structures of
higher stability.

Protein Targeting

Since E. coli is a Gram-negative bacterium, three locations
can be chosen for recombinant protein targeting: cytoplasm,
periplasm, and culture medium. The protein synthesis
occurs in the bacterial cytoplasm where it can accumulate
in a soluble form or aggregate in insoluble inclusion bodies
[200]. Recombinant proteins can also be secreted to the
periplasmic space or to the culture medium, and this ability
may be used with several advantages despite the limited
capacity of the E. coli transport machinery [111, 145]. The
targeting to a defined cellular compartment can affect the
expression of the gene product in different manners. The
most relevant features distinguishing the recombinant protein
production in different cellular locations are summarized
in Table 2.

Cytoplasmic Production. The formation of high molecular-
weight insoluble aggregates, named as inclusion bodies, is
often a consequence of high-level protein production in the
cytoplasm [4]. Protein properties like the charge average,
turn-forming-residue fraction, cysteine and proline fractions,
hydrophilicity, and total number of residues, and
environmental factors like cultivation temperature, pH,
and nutrient supply are known to influence the formation
of these aggregates [103, 141].

Inclusion body formation can be desirable in the
production of several recombinant proteins like bovine
growth hormone or insulin [176]. The main advantages of
inclusion body formation include their facile isolation
[182], the high protein yield that can be obtained [33], and
the simplicity of plasmid constructs. It is often mentioned
that expressing proteins in this form is also advantageous,

Table 2. Characterization of recombinant protein production
targeted to different cellular locations in E. coli.

Cytoplasm Periplasm Medium

Production level High Low Very low
Product stability High/low* Moderate High
Biological activity Inactive  Active Active
N-terminal authenticity Unlikely  Possible  Possible
Aggregation High Moderate Low

Host protein contamination High Low Very low
Downstream processing ~ Complex Simple - Very simple

*Stability is relatively high if inclusion bodies are formed; otherwise rapid
degradation occurs due to high cytoplasmic protease level.
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Fig. 2. General strategy for recombinant protein recovery from inclusion bodies.

because the expressed protein is inactive, and therefore,
harmless to the host [33]. This is true to some extent, but it
is also known that high level production of an heterologous
protein is often harmful due to the energy requirements
and sequestering of protein synthesis machinery that
occurs when a cell is overproducing a protein that it does
not need [42, 155]. Another advantage of inclusion body
formation is the protective effect against the host proteases
[33], although it has been demonstrated that inclusion
bodies are not fully protected against protein degradation
[197] due to the proteolytic accessibility of solvent-
exposed surfaces of inclusion bodies [38].

In most cases, cytoplasmic production of recombinant
proteins involves three steps: inclusion body isolation,
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solubilization of the aggregates, and protein refolding, as
described in Fig. 2 [33, 112]. The co-expression of chaperones
that are known to be important in the folding pathways
[184, 186] increased the production of several proteins
[123, 183], however, the success of such approach appears
to be protein specific [8]. The co-expression of natural
redox agents (e.g. thioredoxin and disulfide isomerases)
has also proven to be a good strategy in the expression of
correctly folded proteins in the E. coli cytoplasm [15].

Protein Secretion. The recovery of a gene product can
be greatly simplified, when this product is secreted into the
E. coli periplasm or to the culture medium (Fig. 3) [75].
Additionally, since secretion often involves the cleavage of
a signal sequence [108], the presence of the initial
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Fig. 3. General strategy for recombinant recovery from periplasm or culture medium.
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methionine on a protein that naturally does not contain it
can be avoided, thus assuring the N-terminal authenticity.
Biological activity and stability are dependent on the
folding state of the protein, and proper folding is unlikely
to occur in the cytoplasm, particularly if disulfide bonds
have to be formed, due to its reducing environment [115,
135]. However, protein secretion is a particularly complex
process [44, 137], and attempts to secrete recombinant
proteins can face several problems; namely, the incomplete
translocation across the inner membrane [8], the insufficient
capacity of the export machinery [111, 145], and proteolytic
degradation [70].

Several factors, including the protein size [89, 131, 151],
amino acid composition [3, 21, 80, 173, 174], and the type
of leader peptide [121, 124], can affect protein translocation.
It has been reported [162] that an optimum translational
level exists to achieve high-level secretion of heterologous
proteins, otherwise secretion severely drops off. This effect
is probably related to the limited secretion capacity of the
E. coli transport machinery [111, 145]. When this capacity
is overwhelmed, the excess of expressed recombinant
protein is likely to accumulate in inclusion bodies [71].

Two major mechanisms that are commonly used for
recombinant protein secretion in nonpathogenic E. coli
are known as type I and type II secretion pathways [148].
In Gram-negative bacteria, extracellular secretion involves
transportation across two cell membranes. This transport
can be done by a single-step mechanism (type I secretion)
or by a two-step process (type II secretion) which is
mediated by the Sec machinery and can also be used
for periplasmic targeting [16, 150]. Extracellular secretion
[138] is not always a specific transport mechanism and
can occur through periplasmic leakage [63, 108, 159, 160].
Co-secretion of molecular chaperones and medium
supplementation with low molecular weight additives have
been shown to increase periplasmic secretion and refolding
yields in the bacterial periplasm [10, 20, 77, 90, 129, 140].

Protein Stabilization

Even though E. coli is an attractive host for recombinant
protein production, the accumulation of some proteins has
often been proven to be difficult due to degradation by
host-specific proteases [13]. Secreted proteins have been
found to be extremely susceptible to proteolysis during
translocation [70], and product degradation has been
considered to be the most serious obstacle to the large-
scale production of secreted peptides [106]. The stability
of a protein is influenced by its amino acid composition,
size [180], folding state [8], cellular location [179], and the
presence of proteolytically sensitive sequences [119].
Several strategies have been adopted to circumvent the
problem of proteolysis, the most successful being the use
of mutant host strains defective in proteases and the
expression of the target protein in a fusion form.

Strategies to Improve Protein Stability: Protease-
Defective Strains and Fusion Proteins. More than 30
proteases and peptidases have been identified in different
cellular compartments of E. coli, and some of these are
listed in Table 3. One of the strategies to increase the
stability of cloned gene products is the use of expression
hosts defective in proteases. Protease-deficient hosts in
which a single protease (like the lon, clp, degP) has been
inactivated are available [41], and expression strains
deficient in multiple proteases have also been reported
[9, 106]. The choice of a particular cellular location for
recombinant product accumulation dictates the type of
mutant strain to be used in each case.

Table 3. Classification of various E. coli proteases; adapted
from [8, 34, 52, 53, 106, 175].

Name Description

ATP-dependent*

Lon Degrades abnormal proteins

ClpP Subunit of ClpXP and CIpAP

ClpX Combines with ClpP to form ClpXP
ClpA Degrades [-galactosidase fusions

ClpQ Threonine active site

ClpY Resembles ClpX, acts with ClpQ
ATP-independent**

Protease I Serine active site

OpdA Degrades signal peptides

PepA Aminoexopeptidase

PepD Dipeptidase

PepE o-Aspartyl dipeptidase

PepM N-Terminal methionine aminopeptidase
PepN Amingpeptidase N

PepP Proline aminopeptidase I

PepQ Proline dipeptidase

PepT Nonspecific peptidase

Dcp Dipeptidyl carboxypeptidase

Ci Cytoplasmic metalloprotease

Fa Endoprotease

So Serine protease

Extracytoplasmic

LepB Signal peptidase

LspA Lipoprotein signal peptidase

SppA ‘Signal peptidase

DegP Serine protease

DegQ Periplasmic serine protease

Protease Il Degrades small peptides (10- 30 amino acids)
OmpT Cuts preferentially at paired basic residues
OmpP Homologus to OmpT

lap N-Terminal Arg-specific aminopeptidase
OrfX Metalloprotease

Protease VI Membrane-associated serine protease

*Cytoplasmic location.
**Cytoplasmic or periplasmic location.



Table 4. Applications of genetic fusions in recombinant protein
production; adapted from [127].

Application Reference

[56,64, 82,114, 119, 194]
[27,60, 101, 110, 116, 130]

Stabilization of cloned gene products
Facilitated downstream processing

Solubility of a gene product [30, 120]
Facilitated in vivo folding [149, 194]
Detection of recombinant proteins [110, 128]
Bacterial surface display [36, 87, 170]
Increased therapeutical stability [168, 169]
Drug targeting [127]

An alternative and widely used strategy to stabilize an
heterologous protein is to express it as a chimera with an
homologous protein [13]. Besides protein stabilization,
genetic fusions can be highly advantageous in recombinant
protein production, facilitating product detection and
recovery (Table 4). Recombinant protein expression as a
fusion-protein with a peptide tag designed for affinity
purification is highly advantageous in terms of downstream
processing. The basic principle underlying affinity purification
is a specific interaction between the affinity handle and
a ligand efficiently immobilized on a gel matrix. This
process enables a high purification factor (often greater
than 1000) and simultaneous concentration [22]. Several
protein-ligand interactions have been used for this purpose
[127,181], and the most common are protein-protein,
protein-carbohydrate, protein-metal, and enzyme-substrate
interactions. Table 5 lists some commonly used affinity
fusion-tag systems and the type of interaction involved in
fusion-protein purification. The interaction between the
affinity tag and the ligand should be specific and strong
enough to enable a one-step recovery procedure, allowing
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at the same time the use of a mild elution protocol to avoid
protein unfolding [1, 22, 126].

For recombinant protein production purposes, the
affinity handle should be small, soluble, proteolytically
stable and secretion competent, should fold efficiently and
independently of the target protein, and should have a
structure enabling the specific cleavage of the target
protein [127, 128, 130, 168, 169]. This cleavage process
can be done by chemical methods that are generally cost-
effective and highly scalable. However, the specificity of
these agents is usually low [5] and, sometimes, the
cleavage procedure requires harsh conditions that may
have a deleterious effect on the target product. Engineering
the fusion tag to introduce a specific site for enzymatic
cleavage is an alternative strategy [78]. Currently used
enzymes are enterokinase, subtilisin, factor Xa, thrombin,
and tobacco etch virus protease [134, 181]. The enzymatic
cleavage procedure allows the specific removal of the
fusion partner although it may be more expensive than a
chemical method. The purification procedure should then
include a first passage through the affinity column to
separate the fusion protein from the contaminants, and a
second passage after the cleavage reaction, to obtain the
mature target protein separated from the handle.

CONCLUSION

The production of heterologous protein molecules in E.
coli has evolved over the past 30 years, and a strong body
of evidence is contributing to a much clearer approach in
the optimization of production strategies and expression
vector design. However, expression of a particular mRNA
in a bacterial host still presents its peculiar set of problems.

Table 5. Commonly used affinity fusion systems and type of interaction on recombinant protein purification; adapted from

[22, 127, 181, 189].

Fusion partner Ligand Size (kDa) Type of interaction Reference
Protein A and derivatives IeG 7-31 {108, 109, 111]
Protein G Albumin 5-15 Protein-protein [169]
S-tag S-fragment of RNase A 2 [98]
Gluthathione S-transferase Gluthathione 26 Enzyme-substrate [157]
c-myc Anti-c-myc 1 [105]

Flag peptide Anti-Flag peptide 1-3 Antibody-antigen [171]
Hemagglutinin Anti-hemagglutinin 1 [69]
Arginine fon exchanger 1 Polyamino acids [91]
Histidine IMAC 1 [31,92]
Cellulose-binding domain Cellulose 3-20 Carbohydrate-protein [185]
Chitin-binding domain Chitin 6 [177]
Maltose-binding protein Amylose 40 [59]
Streptavidin-binding peptide Streptavidin 4 Other interactions [83]

Abreviations: IgG, immunoglobulin G; IMAC, immobilized metal affinity chromatography.
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Protein expression can be tackled in various ways, but
reaching a biologically active product is today, as it was in
the past, the major challenge. E. coli has traditionally been
used as a workhorse for recombinant protein production and,
despite successful advances, a comprehensive view of its
metabolic capabilities is far from complete. Recombinant
protein production in the post-genomic era will bring new
challenges in terms of genome manipulation, and it is
likely that E. coli will continue to play a central role as a
recombinant production host.
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