DOI QR코드

DOI QR Code

Radiolytic and Antioxidative Characteristics of Phytic Acid by Gamma Irradiation

방사선 조사에 의한 Phytic Acid의 분해특성 및 항산화 활성

  • 박희라 (고려대학교 생명공학원) ;
  • 이철호 (고려대학교 생명공학원) ;
  • 안현주 (한국원자력연구소 방사선식품ㆍ생명공학 기술개발팀) ;
  • 차보숙 (수원여자대학 식품과학부) ;
  • 변명우 (한국원자력연구소 방사선식품ㆍ생명공학 기술개발팀)
  • Published : 2004.10.01

Abstract

Radiolytic characteristics of phytic acid by gamma irradiation were investigated, and the antioxidative activity between irradiated phytic acid and commonly used antioxidants including ascorbic acid, tocopherol and butylated hydroxyl anisole (BHA) was evaluated. Phytic acid sodium salt dissolved in a deionized distilled water was irradiated at 0, 5, 10, 15 and 20 kGy. It was found that the level of irradiation had an effects on the degree of degradation. After irradiation, stable DPPH radical scavenging capacity of phytic acid was newly observed, and it was significantly increased by dose-dependent manners (p<0.05). Antioxidant activity of phytic acid in the oil models was higher than that of the other antioxidant during storage, and phytic acid (400 $\mu\textrm{g}$/mL) irradiated at 20 kGy especially showed the highest antioxidative ability among the antioxidants tested during 3 weeks. Results indicated that irradiation induced the radiolysis of phytic acid in an aqueous model system, and the antiradical and antioxidative activities of irradiated phytic acid increased.

방사선 조사에 의한 phytic acid의 분해특성 및 항라디칼, 항산화 활성을 평가하기 위하여, phytic acid를 수용액 모델에서 방사선 조사(0∼20 kGy) 후 기존 항산화제(ascorbic acid, tocopherol, BHA)와의 항산화 특성을 비교하였다. 방사선 조사 후 phytic acid의 조사분해를 확인할 수 있었고, 조사선량이 증가함에 따라 그 분해정도가 유의적으로 증가하였다. 또한 phytic acid의 농도에 따라 방사선에 의한 영향도 다르게 나타났는데, phytic acid의 농도가 증가함에 따라 방사선 조사분해 정도가 감소하였다. 항산화 특성의 측정 결과, 방사선 조사된 phytic acid의 경우 DPPH 라디칼 소거능이 형성되었으며, 조사선량 및 phytic acid의 농도가 증가함에 따라 그 활성이 증가하는 것으로 나타났다. 저장동안 유지산패의 억제효과는 기존 항산화제보다 phytic acid의 항산화성이 유의적으로 높았으며 방사선 조사에 의해 유지 혹은 다소 상승되는 것으로 나타났다. 따라서 방사선 조사시 phytic acid의 조사분해와 동시에 항산화 특성을 증대시킬 수 있는 것으로 나타났다.

Keywords

References

  1. Febles CI, Arias A, Hardisson A, Rodriguez-Alvarez C, Sierra A. 2001. Phytic acid level in infant flours. Food Chem 74: 437-441 https://doi.org/10.1016/S0308-8146(01)00160-1
  2. Liu B, Rafiq A, Tzeng Y, Rob A. 1998. The induction and characterization of phytase. Rev Enz Microbial Technol 22: 415-424 https://doi.org/10.1016/S0141-0229(97)00210-X
  3. Cheryan A. 1980. Phytic acid interaction in food systems. CRC Crit Rev Food Sci Nutr 13: 297-335 https://doi.org/10.1080/10408398009527293
  4. Adeyeye EI, Arogundade LA, Akintayo ET, Aisidea OA, Alao PA. 2000. Calcium, zinc and phytate interrelationships in some foods of major consumption in Nigeria. Food Chem 71: 435-441 https://doi.org/10.1016/S0308-8146(00)00159-X
  5. Evans WJ, Jacks TJ, Mccourtney EJ. 1983. The interaction of zinc ion with phytic acid. J Food Sci 48: 1208-1210 https://doi.org/10.1111/j.1365-2621.1983.tb09193.x
  6. Clydesdale FM, Camire AL. 1983. Effect of pH and heat on the binding of iron, calcium, magnesium, and zinc and the loss of phytic acid in soy flour. J Food Sci 48: 1272-1274 https://doi.org/10.1111/j.1365-2621.1983.tb09209.x
  7. Rickard SE, Thompson LU. 1997. Interaction and biological effects of phytic acid. In Antinutrient and phytochemicals in food. ACS Symposium Series 662. Shahidi F, ed. American Chemical Society, Washington, DC. p 294-312
  8. Graf E, Eaton JW. 1990. Antioxidant functions of phytic acid. Free Radical Biol Med 8: 61-69 https://doi.org/10.1016/0891-5849(90)90146-A
  9. Shamsuddin AM, Vucenik I, Cole KE. 1997. IP6: A novel anti-cancer agent. Life Sci 61: 343-354 https://doi.org/10.1016/S0024-3205(97)00092-1
  10. Berridge MJ, Irvine RF. 1989. Inositol phosphates and cell signaling. Nature 341: 197-205 https://doi.org/10.1038/341197a0
  11. WHO. 1999. High dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy. WHO Technical Report Series 890, Geneva: World Health Organization. p 9-37
  12. Duodu KG, Minnaar A, Taylor JRN. 1999. Effect of cooking and irradiation on the labile vitamins and antinutrient content of a traditional African sorghum porridge and spinach relish. Food Chem 66: 21-27 https://doi.org/10.1016/S0308-8146(98)00070-3
  13. Peterson DM. 2001. Oat antioxidants. J Cereal Sci 33: 115- 129 https://doi.org/10.1006/jcrs.2000.0349
  14. Latta M, Eskin M. 1980. A simple and rapid colorimetric method for phytate determination. J Agric Food Chem 28: 1313-1315 https://doi.org/10.1021/jf60232a049
  15. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1190-1200 https://doi.org/10.1038/1811190a0
  16. Ahn DU, Olson DG, Jo C, Love J, Jin SK. 1999. Volatiles production and lipid oxidation on irradiated cooked sausage as related to packaging and storage. J Food Sci 64: 226- 229 https://doi.org/10.1111/j.1365-2621.1999.tb15870.x
  17. Ahn HJ, Yook HS, Rhee MS, Lee CH, Cho YJ, Byun MW. 2002. Application of gamma irradiation on breakdown of hazardous volatile N-nitrosamines. J Food Sci 67: 596-599 https://doi.org/10.1111/j.1365-2621.2002.tb10644.x
  18. Stewart EM. 2001. Food irradiation chemistry. In Food irradiation- Principles and applications. Mollins RA, ed. Wiley Interscience, New York, USA. p 31-76
  19. Fogliano V, Verde V, Randazzo G, Ritieni A. 1999. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wine. J Agric Food Chem 47: 1035-1040 https://doi.org/10.1021/jf980496s
  20. Schwarz K, Huang SW, German JB, Tiersch B, Hartmann J, Frankel EN. 2000. Activities of antioxidants are affected by colloidal properties of oil-in-water and water-in-oil emulsions and bulk oils. J Agric Food Chem 48: 4874-4880 https://doi.org/10.1021/jf991289a

Cited by

  1. 감마선 조사가 감귤 정유의 생리활성에 미치는 영향 vol.34, pp.6, 2004, https://doi.org/10.3746/jkfn.2005.34.6.797
  2. Effects of Barrel Temperature and Moisture Content on the Physicochemical Properties of Texturized Vegetable Protein vol.24, pp.2, 2004, https://doi.org/10.13050/foodengprog.2020.24.2.141