$H ZAFHEREY G o
HAE B2, 2004 6. 2004-9-2-3-8

AsEel Qosel sH¢el MEE st
= 7|9k QoS #a| AAHS HAl R o

ANz AAET

Design and Implementation of A Policy based QoS
Management System to Support Dynamically
Differentiated QoS

Si-Ho Cha®, Kyu-Ho Kim™*

O ot
45

YEY QoSE AFey] Hdld, IETF= $¥ A¥l2(IntServ) st 223t AulX(DiffServ)zhe #
7B B2de AR RSP 7l 7+ #3l sgeltt A Hddet H2 Alg FYske
IntServst 22l DiffServe 7i/He] A & tidlel AFAL AR 535 AAF22A tofd 37
Fo2E) 3l F5HA QST AFE + Ut 22y DiffServ 727t AHEAES] F2 QoS ¥
73 878 F837] faME 4 A2 Szl el FAY QoSE 4R F F Ut B Al2He] &
T} wEb & 88 DiffServ MIEHAIS] QoSE E&Ho® #jsia FHOE P A% 3
A 7k QoS #E Al2RlE AARtL FEIHT £ H2EHER 749 252 7] DiffServ HE
€3 delxe] 49e B3l THE QoS #e) Al2®le) B S dFsT

Abstract

To provide Internet QoS, the IETF proposed two models of Integrated Services (IntServ)
and Differentiated Services (DiffServ). Unlike IntServ where resource reservation and
admission control is per-flow based using RSVP, DiffServ supports aggregated traffic
classes to provide various QoS to different classes of traffics. However, a dynamic QoS
management system is required to dynamically provide differentiated QoS for customers
who require dynamic QoS change. This paper designed and implemented therefore a
policy-based QoS management system to manage effectively and configure dynamically QoS
of DiffServ networks. The validity of the system has been verified by the experimentation
on the Linux-based DiffServ network.

» Keyword : QoS(Quality of Service), Xitis} AMu|A(DiffServ), Ha 7|2t ®2l(Policy based

Management)

“ (F)AAEE 2 MEAIARIER 71N g8, " ASRANS AHYUA R af



140 BE AFHBREE wmOGEH2004. 6.)

I . Introduction

The best-effort service model in current I[P
networks does not provide the QoS requirements of
next generation network services. To solve this
the IETF (Internet Engineering Task
Force) proposed two models of Integrated Services
(IntServ)(1) and Differentiated Services (DiffServ)

{2). IntServ model is based on per-flow resource

problem,

reservation and admission control through RSVP
Protocol). The
is that the required

(Resource  Reservation main
disadvantage of IntServ
information of flow states and the QoS treatments
in a core IP network raise severe scalability
problems(3). DiffServ model, on the other hand,
supports aggregated traffic classes rather than
individual flows and provides different QoS to
different classes of packets in IP networks.
However, a dynamic QoS management system is
required to dynamically provide differentiated QoS
for customers who require dynamic QoS. From this
reasoning, a QoS management system that can
manage differentiated QoS provisioning is required.
Recently, policy-based management (PBM)(3) has
been considered as a technology that can provide
QoS management supports. The amount of QoS
management task can be reduced by using policies
because one policy can be used for many policy
targets that are various network nodes and the
QoS

requirements. There are several research projects

policy can accept customer’s dynamic
for QoS guarantees using the PBM technology
going on, but only few of them detail the design
and implementation issues of a QoS management
platform with PBM concepts.

The implementation of the policy-based QoS
management system is build on EJB (Enterprise

JavaBeans) framework and uses XML (Extensible

Markup Language) to represent and validate
high-level QoS policies(4](5].

This paper is structured as follows. Section 2
investigates backgrounds of this work. Section 3
discusses the architecture and components of the
proposed QoS management system. Section 4
presents the implementation of the Liuux DiffServ
router and the Qos management system and the
in the
system. Finally in section 5 we conclude the paper.

experimental results video streaming

1. Background

1. Differentiated Service

DiffServ is a technology to provide QoS in an
efficient and a scalable way. It supports aggregate
traffic classes rather than individual flows and
provides a differentiated QoS to a different class of
flows in IP networks. DiffServ provides a service
differentiation for aggregated IP packet streams
with different per hop behaviors (PHBs) by various
differentiated service code point (DSCP) values.
Edge routers mark each IP packet with a DSCP
value and core routers forward the packet
according to the corresponding PHB based on the

DSCP value in the IP header.

Traffic Conditioner « MP (Multi-Field)

« BA (Behavior Aggregate)

MF Shaper BA Queing
”[M"‘” > Dmppul Iclussiﬁert "I Scheduting
=

Differentiated Services Network

Figure 1. DiffServ architecture



A549 Qosel AU AT A¢ A 1Y Qos ¥ Az HA & 74 141

As illustrated in Fig. 1, two main functional
components of an edge router are traffic classifier
and traffic conditioner block (TCB). The traffic
classifier has an alias of multifield (MF) classifier
and classifies packets based on their IP header
field values such as source address, destination
address, DSCP, protocol number or port address.
TCB contains the functional blocks such as packet
meter, marker, shaper and/or dropper. The work of
TCB is to shape a packet to meet the policy
requirement associated with the classification of a
packet and then assign a DSCP value to the IP
packet for a particular behavior. When a stream is
this - DSCP
value triggers a selected PHB in all core routers in
(BA)
classifier. DSCP is simply a value set in the first 6
bits of the differentiated services (DS) byte in the
IP header. It specifies a particular PHB to a router

passed through a DiffServ network,

the network by a behavior aggregate

for a corresponding packet. Currently, four types of
PHBs are specified for DiffServ networks: default
behavior  (best-effort), (CLS),
expedited forwarding (EF), and assured forwarding
(AF).

class selector

2. Policy-based QoS management

The objective of the policy-based QoS management
is to manage the QoS
high-level policies that describe the behavior of the

of connections using

network in a way as independently as possible of
network devices and topology. The amount of QoS
management task can be reduced by using policies
because one policy can be used for many policy
targets that are various network nodes. The four
main functions of the policy-based management,
shown in Fig. 2. are graphical user interface,
transformation logic, and
The
interface is used by a network administrator to
input SLAs (Service Level Agreements) to deploy

QoS of a network. The service level that a network

resource discovery,

configuration distributor. graphical user

offers for a customer is defined by both an SLA,

and a high-level QoS policy is defined by an SLA
and an information on a network topology that is
discovered by the function of resource discovery.
high-level
policies, and also translates the high-level policies

The transformation logic verifies the

into low-level policies that are distributed to
various devices in the network. The configuration
distributor is responsible for ensuring that the
low-level policies are distributed to the various
devices in the network(6].

I Graphical User Interface l { Resource Discovery ]

SLAs Topology Information

High-Level Policies

l Transformation Logic !

I

Low-Level Policies

{ Policy Distributor ,

Figure 2. Policy-based management concept

3. EJB-based management architecture

The management architecture based on EJB
of the
development of multi-tier management systems,

technology simplifies the complexity
and enhances portability by separating the various
complexities inherent in the multi-tier management
applications, such as transaction management,
life-cycle management, and resource pooling, from
specifics such as business logic and user
interfaces(7). There are three main components in
EJB technology - EJB component, EJB container,
and EJB connector. An EJB component is a Java
class that encapsulates functionality which is
reusable in many applications. An EJB container
EJB

provides a

runtime  environment for
The EJB
mechanism for EJB components to access data
EJB
management system developers the ability to model

the full

provides a

components. connector

from legacy systems. technology gives

range of objects found in network



142 BB BHEHEREE wm3GE(2004. 6.)

management by defining the following distinct
types of EJB components: session beans, entity
beans, and message-driven beans. Session beans
represent behaviors associated with client sessions
and are non-persistent objects. Entity beans
represent collections of data and are persistent
objects. Message-driven beans represent JMS (Java
Message Service) consumers that implement business
logic on a server(7). It provides asynchronous
By these

specifics, EJB-based management framework has a

communications between EJB beans.
number of benefits as follows: encapsulation of
business logic, simplified application development,
transaction

scalability, consistency,

database

extensibility,
and directory
and distributed

management, access,
container-managed persistence,

object access.

lif. Design

the
In this section we also

This section describes proposed QoS
management system.
discuss the components of the system, and QoS

management procedures

1. architecture and component

The architecture of proposed QoS management
system is shown in Fig. 3.

The system conforms to the Model-View
-Controller (MVC) architecture. Therefore,
highly manageable and scalable, and provides the
overall strategy for the clear distribution of objects

it is

involved in managing service. There are two main
components in the architecture: a Web server and
A Web server is
logic of the

an EJB-based policy server.
responsible for the presentation
system. An EJB-based policy server is responsible

for the business logic of the system. The system
provides a Web-based interface for a network
administrator to create and revise high-level QoS
policies (HQPs) to be enforced on the DiffServ
JSP

pages, and XML technologies to provide for the

network. The system uses Java Serviets,

administrator’s view.

Web Server

XML Schema/| | XML Parser/
l XSLs H XSLT H s‘“"“"l

J R —
Web-based

T
'
“ Region/ st 1] ISP Pages/ '

: me' --------
H Interface Session |
f H bem

[ .

~~~~~~~~~~ RMI-IIOP = = = = = = = % w = e i ) mmitybens]
{ / EJB-based Policy Server e

EIE Container NDVLD AP} QoS Folicy

Directory
Topology Policy QoS Service e

Manager Manager Monitor Manager JDBC ‘Topology

Database
(. \ YO e

Topolo, Packet ! Traffic ]f Queuing ” JDBC ce

;po % H Classifier diti duli Services Datshase

odes - y "

Policy J Policy J U“‘V } }l —
JDBC _ [Performance|

I Database

Figure 3. Architecture of a policy-based QoS management
system

As illustrated in Fig. 3, there are several
functional components in the EJB-based policy
server in the system and they are used to discover
type, the
composition and distribution of the low-level QoS
(LQPs),
services, and the interfaces of the policy server.
The system uses the following components to
discover network topology and each router type.
The topology node (TN) bean is an entity bean
containing the information of a network topology

a network topology, each router

policies the management of customer

and each router type. The information is retrieved
using SNMP MIB-II. The topology database (TD)
stores the topology information and each router
type retrieved from a DiffServ network through
SNMP. The topology manager (TM) bean is a
session bean responsible for discovering the
topology information and each router type and

storing them into the TD and setting up the TN



HERA QoS FAU AFE A% A /¥ QoS By A2we HA % 7 143

beans according to the retrieved information.

The system uses the following components to
translate HQPs into LQPs and distribute the LQPs
to the DiffServ network. The packet classification
policy (PCP) bean is a part of LQP entity bean
that classifies packet flows and assigns class
identifiers to them. The PCP beans are deployed to
edge routers and control the inbound traffics. The
traffic conditioning policy (TCP) bean is a part of
LQP entity bean that meters the classified packets
to check whether they conform to-a traffic profile
and performs marking, dropping, and/or shaping
packets according to the metering results, The TCP
beans are deployed to edge routers and control the
The queuing and scheduling
policy (QSP) bean is a part of LQP entity bean. It
performs queuing,

outbound traffics.
scheduling, and/or dropping
packets. The QSP beans are deployed to core
routers to control the outbound traffics. The QoS
policy directory is a directory storing the LQP
beans. The policy manager (PM) bean is a session
bean that is responsible for translating HQPs into
low-level QoS policy beans and setting the values
of DiffServ MIBs of the routers. The PM is also
responsible for deploying the LQPs to relevant
routers in the DiffServ network. The QoS monitor
(QM) bean is a session bean that is responsible for
QoS
deployment by retrieving the values of DiffServ

monitoring the resulted from a policy
MIBs and comparing them to the attribute values
of the three LQP beans.

The system uses the customer bean, the service
bean, and the service manager bean to manage a
customer’s services. An instance of a customer
bean represents a customer. An individual
customer’s information is maintained in a customer
service database. The service bean represents a
service provisioning for a customer and the service
manager bean guides the installation process of the

service bean.

2. QoS management process

To process a policy-based QoS management
efficiently and correctly, the following procedures
are required: topology discovery, policy definition
and validation, policy translation, policy
deployment, and QoS monitoring. To process a
policy-based QoS management efficiently and

correctly, the following procedures are required:

Topology discovery: In order to describe the QoS
of a DiffServ network, the system should have the
knowledge of the routing topology and each
router’s role. The TM session bean accomplishes
the discovery of the routing topology and router
type discovery by using two SNMP MIB-II tables,
ipAddrTable and ipRouteTable. The ipAddrTable
contains IP addresses of all network interfaces in a
router and the ipRouteTable contains an IP routing
table that has a next hop host and a network
interface for a set of destination IP addresses. The
topology and router information discovered from
in the TD,
represented as TN entity beans.

the network are stored and are

Policy definition and validation: The system
HQPs as valid XML documents
validates the XML documents. A Java Servlet on

defines and
the Web server receives QoS policy data from a
Web browser and creates valid XML documents
and then validates them. Once the HQPs are
validated, a Java Serviet requests a PM session
bean to create the instances of LQP entity beans,
PCP bean, TCP bean, and QSP bean.

Policy translation: The translation of a QoS
policy from HQPs to LQPs is done by the PM
session bean on the EJB-based policy server. The
PM session bean translates HQPs to LQPs by
properly setting the attributes of the three LQP
entity beans. The attributes of the LQP entity
beans are mapped into the device configuration
parameters to configure the DiffServ routers for
provisioning QoS requirements.



144 BE AFEFREE #0EE(2004. 6)

Policy deployment: The deployment of LQPs is
done by the three LQP entity beans. These three
LQP entity beans perform SNMP operations for
deploying each LQP. The PCP bean and the TCP
bean are deployed to edge routers to control the
functions of the edge routers, whereas the QSP
bean is deployed to core routers to control the
The PCP bean
classifies packet flows and the TCP bean performs

functions of the core routers.

the traffic conditioning such as metering, marking,
dropping, and/or shaping packets. The QSP bean
performs queuing, scheduling, and/or dropping
packets. A set of these actions is accomplished by
DiffServ. MIB. The DiffServ MIB

describes a configuration and managément aspect

using the

of DiffServ routers.

QoS monitoring: A deployed QoS policy might
not behave as defined in the policy. The QoS
monitoring in the system uses the same DiffServ
MIB as in the policy deployment. The QM session
bean accesses the policy definition in the three
LQP beans and compares the observed behavior of
a network to the one defined in the policy. If any
QoS degradation is observed, the QM session bean
notifies an administrator by alerting messages and
updates the performance database.

IV. Implementation and experiment

1. Linux-based DiffServ routers

Linux-based routers are used for our DiffServ
network testbed. Supporting differentiated services
are already incorporated in the mainstream Linux
kernel source code version 2.4 and later(8). Fig. 4
shows the implementation architecture of a Linux
DiffServ router. An SNMP agent with a MIB-II
DiffServz  MIB receives

and a management

operations from the EJB-based policy server and
performs appropriate parameter changes in the
Linux traffic control (TC) kernel. Communication
between the SNMP agent and the Linux TC kernel
is achieved through Netlink socket(9). An SNMP
agent containing a MIB-II and a DiffServ MIB has
UCD-SNMP
package 4.2.2(10] that provides an agent extension

been implemented by wusing the

capability.

User Space
UCD-SNMP 42.2

DiffServ

SNMP Stack Ml
H
1
: l
j
;
'

@
i
¢
2
H
'
t
H
i
i
i
i

SNMP Agent
' ¥ L] '
et I . . 1 R
I
l Netlink Socket |
T T
Kemel Space [ 1
(e, 2.4.48y
] DiffServ Extension Code, iproute2 l
mzhbj N
1 Linux Network Traffic Controller ]

Figure 4. Architecture of a Linux DiffServ router

2. A QoS Management System

The system is implemented on a Windows 2000
server system. It consists of a Web server and an
The
responsible for the presentation logic of the system

EJB-based policy server. Web server is
and the EJB-based policy server is responsible for
the business logic of the system. In the MVC
architecture, the view is implemented using the
JSP template mechanism and the Composite View
pattern. The controller is implemented using the
Front Controller pattern (a Action Servlet) and the
Session Facade pattern (EJB Session Beans). The
model is implemented using EJB Entity Beans and
Service Locator pattern. We use Apache Tomcat
4.0.1 for the Servlet and JSP container. An
EJB-based policy server within the business-tier
runs an EJB server to manage EJB components.
We use JBoss 2.4.10(11)for an EJB-based policy
server and use EJB 1.1 to implement EJB beans.
AdventNet SNMP API(12] written in Java are used

for handling SNMP operations. The Oracle 8i



A5AL Qosel FAHY AFE AY FA 7|4 QoS #2Y AlxHe] HA % 7

145

for

storing the performance and

information derived from MIB tables.

Gl bargn o -t = Pl e L givted
©OARE BN SAY BASRY EKD SENE

Tase s - 4 Qe e Fooa @ Y 33 H

Enterprise Edition 8.1.6 for Windows NT is used

topology

§ 280 S b/ ocalhost SRV pmaorR/nou 55

P M Qos Ds Apelicy-basad Qo8 management platform

Cawele @A OE awiE gooe % B E

B2 [ o cabon 606

policy_raglon.J6p

PMaosDS ..o

Cresting » New Pobicy

This displays a new Policy Defiation page.
Py B
Conditions:
Soarve Neds [iS376812
Dostinetien Node fi7Zi6 11
Rosters Py
Applicetion Type [CHR (Constat B Rate) =]
Timo [y 21 -[ay 53

Actions:
Service Lavel [Promium Somvice .

Figure 6. Snapshot of the system

fachens s g s e bt 5 i .l‘n
o 9 A gm o goor 3 3 T HE )
AP e oy ki do . Jed
PMQOSDS Apsticybased 008 munagement plafore
m A NewPolicy (ID is 2) was Creuted and Validated.
AR S 2tz

h 4

AT |
S+ DG Qe o Jom 3 43 -

4 eesiora®L O 20z00agati50-8260-1° 7>

Anyc/siats
<onc> Any</erite

Figure 7. Snapshot of the system

Fig. 5 shows the main screen (index.jsp) of the
policy-based QoS management system. Fig. 6 shows
the the high-level policy
information and Fig. 7 shows the result of the

input forms for

request for the policy creation of Fig. 6.

3. Experiment

To show the effectiveness of the system, we
apply Windows Media Streaming Services to our
DiffServ network. To do that, we configure a
testbed shown in Fig. 8.

D1(Serverl)

Premium seryice

Bronze sérvice

Differentiated Services Network

Figure 8. Experiment environment

Two streaming servers are attached to the
network - one server to D1 and the other to D4.
Fig. 9 shows the snapshot of the streaming server
applied to the testbed. They have exactly the same
hardware and software system configurations. A
policy server is attached to D3. The systems in the
testbed are running on the following hardware
configurations. The core routers are running on
Pentium IV 1.8 GHz with 512 MB main memory,
the edge routers on Pentium IV 1.5 GHz with 512
MB main memory, two VOD servers on Pentium IV
2.0 GHz with 512 MB main memory, and the other
systems on Pentium III 1.0 GHz with 256 MB
main memory. All the links in Fig. 8 are connected
via FastEthernet NICs.



146 8B AFEFREE w2004, 6.)

Music Viden
List

TFEHO} - Violet #ela - Temptation

B -¥ sty Mylal BN A7y ARYeg FRAUS.

s Lo

L

Figure 9. Snapshot of the streaming server

In the configuration, there are three connections
running - two for multimedia connections and the
other one for cross traffic. Two connections for
multimedia traffics are the connection between Sl
and Serverl, and the one between S4 and Server2.
Those connections share a link between CO and
Cl. To differentiate the services between them, the
connection between S1 and Serverl is applied by
while the other multimedia
connection between S4 and Server2 is applied by
the link
congested, MGEN toolset(13) is used to generate
cross traffics on that link, and CBR traffics are
used to achieve that goal.

Premium service,

Bronze service. To make sharing

Cross traffics are
generated at CO and sinked at C1 router. By doing
this, the service levels and the resulted QoS can

be explicitly demonstrated.

i

ap &
N et DK

084 kopa ; 928
S04 RbPS | AR BLIUNSE: GHLIKEps
Poagem HITP ¢
. B - i
‘ 0 L RUE R4 i)
Bt AL HA ¢ b
uEes | eMB NG b |
Issses—— 0% G5}

Figure 10. Snapshot of the client S1

A B2}
O T
2 UE Bam: 84 e
NanuSdse W Ke 08 B BEN:

¢ ioe T L
FUN EZAY &3 [
Eag a5 Bs | SIEG
s uEps | ATED

g . o T L

Figure 11. Snapshot of the client S4

Fig. 10 and Tig. 11 show the results of the
Fig. 10
connection with Premium Service between S1 and

experiment,. is the snapshot of the
the streaming Serverl. Fig. 11 is that of the
connection with Bronze Service between S4 and the
streaming Server2. As shown in Fig. 10 and Fig.
11, the difference in the video quality of each
connection is explicit. The client S1 with Premium
service receives a video stream with 530.3 kbps,
while the client S4 with Bronze service receives a
video stream with 245.6 kbps.

From the experiment, we can verify that the
proposed policy-based QoS management system
provides differentiated QoS levels to the contending
the platform.
Obviously, this work can be extended to a network

connections  using management
with more complicated connections.

V. Conclusion

In this paper, we proposed and implemented a
policy-based QoS management platform for DiffServ
enabled IP networks. The system integrated the
functions of policy and QoS
monitoring by extending the original IETF PBM

management

architecture to the policy-based QoS management.
We presented both a QoS management model for
policy-based QoS and a QoS
management mechanism. We showed the QoS
management procedures as well as the structures

provisioning

and components of the system.

To show the effectiveness of our system, we
experimented with video streaming systems in our
Linux-based DiffServ testbed. In the experiment,
we demonstrated that. our system is able to

manage differentiated QoS provisioning in a



A5HA QoS A AT

A% A4 71 Qos ¥l A2ge] 4A 4 74 147

DiffServ network. Because this work can be
obviously extended to a network with more

complicated  connections, we are currently
extending our system with the various QoS policies
on the testbed to study how the system can
provide differentiated QoS guarantees with various
service requirements. We expect our system to be
successfully integrated in the service management
systems used by the service providers in order to
meet various dynamic QoS requirements from their

customers.

o

rek

L

(1] R. Braden, D. Clark, S. Shenker, “Integrated
Services in the Internet Architecture: an
Overview’, IETF RFC 1633, June 1994.

(2) S. Blake, D. Black, M. Carlson, E. Davies, Z.
Wang W. Weiss, “An Architecture for
Differentiated Services”, IETF RFC 2475,
December 1998.

(3) R. Yavatkar, D. Pendarakis, R. Guerin, "A
Framework for  Policy-based  Admission
Control”, IETF RFC 2753, January 2000.

(4) Si-Ho Cha, Kuk-Hyun Cho, "A Policy-Based
QoS Management Framework for Differentiated
Services Networks”, Springer-Verlag's Lecture
Notes in Computer Science (LNCS) Vol. 2662,
August 2003.

(5) Si-Ho Cha, Kuk-Hyun Cho, “Policy-based
Differentiated QoS Provisioning for DiffServ
Enabled IP Networks”, Springer-Verlag's
Lecture Notes in Computer Science (LNCS),
accepted for publication, June 2004.

(6) D. C. Verma, “Policy-Based Networking:
Architecture and Algorithms”, New Riders,
November 2000.

{7) Sun Microsystems, Inc, “Telecom Network

Management With EnterpriseJavaBeansTM
Technology’, Technical White Paper, May
2001.

(8) Differentiated Services on Linux,
http://diffserv.sourceforce.net.

(9) G. Dhandapani, A. Sundaresan, “Netlink
Sockets-Overview, University of Kansas’,

September 1999,
http://qos.ittc.ukans.edu/netlink.

(10) UCD-SNMP Package, University of California
at Davis, http://www.net-snmp.org/.

(11) JBoss Application Server,

X xp 2

19958 &dugta AxANE
(13Kh

1997 Boigta AAA e
(1844

20049 Feoistw AFERE
(FHD

2000 TH$-BA FHATA

Aded

(F) Sl Z2 X~

7&saE Bz

(TR YEYA AZEY 0],

WEZ Be), A Qe

AZESo] HXVE 7lg

s

Bedjkn AR 2]
(eTekh

Ferishn e WAk}
QLER

Fecista ik AAAS)
QLT

AR Qe B3t mr
7 Felg R ok}
(HHED YIEAA B, fui9)
Bl HESH, de8 e

7le



