Diversity and Inheritance of AFLP Markers in Wild and Cultivated Soybeans

AFLP marker를 이용한 콩의 유전적 다양성과 유전분리 분석

  • Published : 2004.10.01

Abstract

Genetic variation is the basis of crop improvement. Limited genetic diversity in a crop species may restrict the amount of genetic improvement that can be achieved through plant breeding. Soybean is one of the world's most important crops. A potential source of genetic variability for the cultivated soybean is the wild species G. soja Sieb. & Zucc. Amplified fragment length polymorphism (AFLP) analysis is a PCR-based technique, which can detect a 10-fold greater nubmer of loci than other DNA marker analysis. Twenty cultivated soybeans and two-hundred wild soybeans were used to determine genetic vatiations by AFLPs and evaluate the usefulness of AFLPs as DNA markers. Six-hundred and ten fragments were detected with an average of 56 AFLP fragments produced per primer in a total of 11 AFLP primer pairs. The number of polymorphic loci detected per primer ranged from 7 to 20 and the polymorphism was greater in wild than in cultivated soybean. F$_2$ segregation analysis of four AFLP fragments in combination of Hwaeomputkong ${\times}$ PI 417479 indicated that they segregate as stable Mendelian loci with 3 : 1. This results strongly suggest that the AFLP analysis is a good technique for the detection of genetic polymorphism in a wide plant species.

AFLP marker의 유용성 을 알아보고자 재배콩과 야생콩을 대상으로 유전적 다양성과 유전분리 현상을 분석하였다. 공시 재료들의 polymorphism은 재배 콩과 야생 콩에서 각각 평 균 2 9%와 12.2%의 polymorphism을 보였으며, 재배 콩과 야생 콩에서 공히 유전적 다양성을 보인 DNA단편은 11개 primer 평균 24개를 나타내었다. Primer 조합별로도 polymorphism에 다양한 차이가 있었는데 평균 22.9%로 13.0-38.5%의 변이를 나타내었다. 재배 콩 간의 교잡후대(화엄풋콩 ${\times}$ PI417479) F$_2$집단에서 AFLP marker의 유전분리 양상을 분석한 결과 3 : 1의 분리 비를 따르는 것으로 판단되었다.

Keywords

References

  1. Aggarwal, R.K., D.S. Brar, S. Nandi, N. Huang, and, G.S. Khush. 1999. Phylogenetic relationships among Oryza species revealed by AFLP markers. Theor. Appl. Genet. 98: 1320-1328 https://doi.org/10.1007/s001220051198
  2. Ahmad, Q.N., E.J. Britten, and D.E. Byth. 1979. Inversion heterozygosity in the hybrid soybean x Glycine soja. The J. of Heredity 70: 358-364 https://doi.org/10.1093/oxfordjournals.jhered.a109277
  3. Blears, M.J., S.A. Grandis, H. Lee, and J.T. Trevors. 1998. Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. Journal of Industrial Microbiology & Biotechnology 21: 99-114 https://doi.org/10.1038/sj.jim.2900537
  4. Broich, S.L. and R.D. Palmer. 1980. A cluster analysis of wild and domesticated soybean phenotypes. Euphytica 29:23-32 https://doi.org/10.1007/BF00037246
  5. Cho, Y.C., Y.S. Shin, S.N. Ahn, G.B. Gregorio, K.H. Kang, B. Darshan, and H.P. Moon. 1999. DNA fingerprinting of rice cultivars using AFLP and RAPD markers. Korean J. Crop Sci. 44(1) : 26-31
  6. Choi, I.Y., S.H. Lim, D.W. Kim, Y.S. Choi, Y.B. Shin, and N.S. Kim. 2000. Classification of diverse soybean germplasm with morphological characters and molecular markers. Korean J. Genetics 22(2): 87-100
  7. Cregan, P.B., T. Jarvik, A.L. Bush, R.C. Shoemaker, K.G. Lark, A.L. Kahler, N. Kaya, T.T. VanToai, D.G. Lohnes, J. Chung, and J.E. Specht. 1999. An integrated genetic linkage map of the soybean genome. Crop Sci. 39: 1464-1490 https://doi.org/10.2135/cropsci1999.3951464x
  8. Erschadi, S., G. Haberer, M. Schoniger, and R.A. Torres-Ruiz. 2000. Estimating genetic diversity of Arabidopsis thaliana ecotypes with amplified fragment length polymorphisms (AFLP). Theor. Appl. Genet. 100: 633-640
  9. Ertl, D.S. and W.R. Fehr. 1984. Agronomic performance of soybean genotypes from Glycine max X Glycine soja crosses. Crop Science 25:589-592 https://doi.org/10.2135/cropsci1985.0011183X002500040003x
  10. Jeon, J. J.. 2001. Genetic diversity of Gibberella zeae from corn using AFLP. MS thesis Seoul National University
  11. Kang, B. C., J.W. Yu, M.H. Lee, and B.D. Kim. 1997. Applicability of AFLP in hot pepper genetic analysis. J. Kor. Soc. Hort. Sci. 38(6): 698·703
  12. Keirn, P., J.M. Schupp, S.E. Travis, K. Clayton, T. Zhu, L. Shi, A. Ferreira, and D.M. Webb. 1997. A highdensity soybean genetic map based on AFLP markers. Crop Sci. 37: 539-543
  13. Kim, H.S., S.H. Lee, and Y.H. Lee. 2000. A genetic linkage map of soybean with RFLP, RAPD, SSR and morphological markers. Korean J. Crop Sci. 45(2): 123-127
  14. Maughan, P.J., M.A. Maroof, B.G.R. Saghai, and G.M. Huestis. 1995. Amplified fragment length polymorphism(AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis. Theor. Appl. Genet. 93: 392-401 https://doi.org/10.1007/BF00223181
  15. Nam, S.H., J.W. Yu, B.C. Kang, and B.D. Kim. 1997. Selection of parental lines for hot pepper mapping population using RFLP and AFLP analyses. J. Kor. Soc. Hort. Sci. 38(6): 693-697
  16. Shoemaker, R.C., R.D. Guffy, L.L. Lorenzen, and J.E. Specht. 1992. Molecular genetic mapping of soybean: map utilization. Crop Sci. 32: 1091-1098 https://doi.org/10.2135/cropsci1992.0011183X003200050004x
  17. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic acids Research. 23(21) : 4407-4414 https://doi.org/10.1093/nar/23.21.4407