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A Study on Spatial-temporal indexing for querying current and past positions
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ABSTRACT

The movement of continuously changing positions should be stored and indexed for querying current and
past positions. A simple extension of the original R-tree to add time as another dimension, called 3D R-tree,
does not handle current position queries and does not address the problem of low space utilization due to
high overlap of index nodes. In this paper, I propose the dynamic splitting policy for improving the 3D R-tree
in order to improve space utilization of split nodes. I also extend the original 3D R-tree by introducing a new
tagged index structure for being able to query the current and past positions of moving objects. I found out
that my extension of the original R-tree, called the tagged dynamic 3DR-tree, outperforms both the 3D R-tree
and TB-tree when querying current and past position.
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| . Introduction answering queries about the object's movements.

For speeding up query processing on the object’s

One of new applications of database mMOVements, I need a new method of indexing
technologies is to deal with moving objects large amounts of spatial-temporal data in
whose position changes continuously over time. three-dimensional space, where two dimensions
The movement of moving objects needs to be correspond to space and one dimension denotes
stored in a moving objects database for time.
One of the problems not addressed by the
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3-dimensional R-tree index structures is to
process range queries on the current and past
positions of moving objects. The current position
in this paper represents the lastly sampled
location, which is to remain until changed. In
this work, I assume the movement of moving
objects is modeled as a set of lines, where each
line has the two end points (xi, yi, ti) and (xj, yj,
tj)). The current position (xj, yj, tj) is to remain
until changed in the future. For a time point
after tj, it is unknown where the object is
moving. For the time interval [tj, now), there
exists no movement data in the moving objects
database. In this paper, the term now is used for
describing a time point of issuing queries. Since
no movement data exist between the time of the
current position and now, it is not possible to
answer time interval queries with the interval [tj,
now). To my knowledge, range queries on
current and past positions cannot be handled by
the 3D R-tree[1] and TB-tree[2].

The idea of this paper is to develop a new
dynamic index structure based on the R-tree in
order to efficiently process range queries on
current and past positions. To improve the
performance of processing range queries, I
devised elaborate splitting policies of the 3D
R-tree for inserting the movements of moving
objects. This means that the proposed splitting
policy provides a new dynamic 3-dimensional
index structures for supporting range queries on
current and  past  positions.  Through
modifications to the original 3-dimensional
R-tree, I overcome the problem of low space
utilization of index nodes and the problem of
processing time interval queries based on now.

From the viewpoint of space utilization, 1
observe that the old node which is one of two
split nodes along time axis does not have
additional insertion any more. It is therefore
desirable to assign more entries to the old node,
which is named as the unbalanced splitting
policy along time axis. In order to handle range
queries on current and past positions, I modified
the original 3D R-tree to keep the now tags
which represent whether child index nodes
include some of UC(Until Changed) pages or
not.

The rest of the paper is organized as follows.
Section 2 reviews the spatial access methods
related to my work. Section 3 presents a tagged
dynamic 3D R-tree for storing the current and
past positions of moving objects. Section 4
describes the experimental comparison of the
performance of the tagged dynamic 3D R-tree
with the original 3DR-tree and TB-tree. Finally I
summarize my contributions in the section 5.

Il. Related Works

Many researches on spatial-temporal indexing
methods have been done on the basis of
data-driven approaches like variants of the
original R-tree[3]. The continuous growth of time
domain in three-dimensional space makes it
difficult to use space-driven index structures like
the KDB-tree[4], the quad-tree[5], etc.

Since the TB-tree[2] aims only for trajectory
preservation, this allows that a leaf node only
contains the line segments belonging to the same
trajectory. While the TB-Tree are suited for
trajectory-based querying, the performance is not
adequate to process range queries on current and
past positions.

The spatio-temporal indexing methods, namely
the 3D R-tree[1] and HR-tree[6] are based on the
R-tree where the third dimension corresponds to
time. The 3D R-tree is the 3-dimensijonal version
of the original R-tree. The 3D R-tree does not
address the problem of high overlap of adjacent
index nodes and does not describe how to
process range queries on current and past
positions. The HR-tree maintains an R-tree for
each timestamp. The HR-tree performs well for
moving objects not moved frequently. Because
leaf nodes and non-leaf nodes should be newly
created for frequently moved objects, the
performance will be poor in range queries.

There exist a  small number of proposals
addressing the problem of handling now or until
changed. The GR-tree[7], an extension of the
R*-tree[8], was proposed for indexing general
bitemporal data. But .the GR-tree does not
consider the overlap problem that caused by
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inserting closed line segments.

Ill. MODELING AND STRUCTURES

In this section, I present the structure and
algorithms of the tagged dynamic 3DR-tree for
indexing both current and historical positions. To
represent current and past positions of moving
objects, 1 define UC lines that keep the lastly
reported positions of moving objects until
changed. In the following, I use the notion of the
UC MBB, which denotes a time growing
bounding box of which size depends on now.

3.1 Modeling positions of moving objects

" “vemss ] musdMB

(a)

Fig. 1 Structure of the tagged dynamic 3DR-tree. (a)
a hierarchy of nodes, (b} an example of non-leaf
nodes (c) an example of leaf nodes.

Moving objects continuously move after the
time point of the lastly sampled position. Let the
previous sampled position be (xi, yi, ti) for a
moving object MOi. If the new sampled position
is (xj, yj, tj), a new line segment <(xi, yi, t), (xj,
yj, tj)> should be inserted. I define the lastly
sampled position as the UC point, which means
it should be to remain until changed. I need to
consider two different types of line. First, the
closed line, like <(xi, yi, ti), (xj, yj, j)>, should be
represented and stored in the databases. Second,
the open-ended line (e.g. <(xj, yj, ). (X, yj
now)>) is a virtual line segment, where now is a
variable representing the (ever increasing)
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current time. If the moving object reports
another sampled position (xk, yk, tk) after ¢
where tk > tj, the open-ended line should be
changed as follows : <(xk, yk, tk), (xk, yk,
now)>. Whenever the recently sampled position
is reported, the open-ended line needs to be
redefined.

The time interval query with the range [t
now) is requited to compute with the
open-ended lines. To find open-ended lines
which intersect with the time interval [tj,
now),first of all, it is necessary to find index
nodes whose MBB overlaps with now-related
time intervals. If leaf nodes include one or more
UC line, the MBB of the leaf nodes should be
logically and dynamically extended for
supporting now-related time interval queries. I
need to differentiate the UC MBB including UC
lines from usual MBBs not including UC lines.
Let UCLinei be a UC line segment of a moving
object MOi. MBB(Minimum Bounding Box)
including one or more UCLinei is denoted as the
UC MBB. The fixed MBB means the MBB that
does not contain any UCLinei.

3.2 Index structures

To indicate UC lines and UC MBBs, I add a
tag now to the node structure of R-tree. Figure
2(a) illustrates the structure of the tagged
dynamic 3DR-tree. In leaf nodes, the tag now
indicates the corresponding entry has the UC
point. In non-leaf nodes, the tag now indicates
the corresponding entry has UC_MBB. Figure
1(b)(c) shows that the UC MBB is denoted as the
time growing bounded box. The upper time
bound of UC MBB is growing over time, and its
value is now. In Figure 1(b), The bounding box
of stored MBB are specified by <(xi, yi, ti), (xj,
yj, 4)>, but the time-growing bounding box of
UC MBB is specified by <(xi, yi, ti), (xj, yj,
now)>. To process range queries, I substitute the
time now of UC MBB for a time tq of issuing
queries.

3.3 Search algorithms

Since the 3D R-tree handles only closed lines,
it cannot answer now-related time interval
queries. The tagged dynamic 3DR-tree is possible
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to process range queries on current positions and
trajectories of moving objects. Figure 2 shows the
algorithms of processing range queries of the
tagged dynamic 3DR-tree. The tagged dynamic
3DR-tree allows us to issue current position
queries as well as range queries. For the current
position queries, the SearchCurrentPosition
algorithm checks that UC MBBs intersect with a
given query region. Since the query of searching
current positions is the time slice query with a
specific time now, UC MBBs only are checked in
the non-leaf nodes, and UC points only are
returned in the leaf nodes.

Algorithm SearchCurrentPostions(node N, rectangle W)
IF N is a non-leaf node
Invoke SearchCurrentPostions(N' W) for UC_MBBs
that their MBBs intersect with the query window W.
ELSE
Report oids and UC points of UC lines that their MBBs
intersect with the query window W.

Algorithm SearchRangeTrajectories(node N, mbb W)

IF N is a non-leaf node
Invoke SearchRangeTrajectories(N',W ) for every entry
intersects with the query window w.

ELSE {

FOR EACH UC points {
/Il check open-ended lines

Let UC_line be Line(the UC point, now)
Report oid and UC_line that intersect with the
query window w.

}
FOR EACH closed lines
/l check closed lines
Report oid and the closed line that intersect the
query window w.

}

Fig. 2 Search query algorithms for current and past
positions.

The SearchRangeTrajectories algorithm is to
process range queries related now, and it is easy
to extend of the classical range query processing
using the R-tree. For the tagged non-leaf node,
the upper bound of UC MBB is changed to [xj,
yj. now). A time-growing bounding box specified
by <(xi, yi, ti), (xj, yj, now)> satisfies a range
query <(x1, y1, t1), (x2, y2, t2)>, if and only if
<(xi, yi), (xj, yj)> intersects <(x1, y1), (x2, y2)>
AND ti < t2 A now > tl. For the tagged leaf
node, it first needs to check open-ended lines
with UC points. To find UC point, it needs to
check the tag now of entries. Each UC line is
checked the intersection with the query window.
Second, it needs to check closed lines that
intersect with the query window.

3.4 Insert algorithms

When an object reports a new position at time
t, this requires two types of operations. One is
the insertion of a new closed line segment that
means the movement of the object. The other is
to redefine UC point of the moving object. To
choose the best leaf node for inserting the closed
line segment, I use the algorithm ChooseSubTree
of the original R-tree. The procedure
InsertLSto3DRtree will handle the overflow of
node, which is based on the dynamic merging
and splitting policies of the tagged dynamic
3DR-tree described in the next section. Since a
new inserted line segment has always a new UC
point, I set the tag now of the inserted line
segment. I try to find it's previous UC point,
first, in the same leaf node, and next, in other
leaf nodes. Searching of the previous sampled
position can be achieved by point search queries.
The update of the tag of the UC point does not
lead to the structural change, but if a given leaf
node does not have any UC points by the tag
update, its changing information should be
propagated to the parents of the leaf node.

Algorithm Iinsert(O/D Id, Point PrevPos, Point NewPos)
LS « Line{(PrevPoint, NewPos);
// make a closed line
PageNum « ChooseSubTree(LS):
{fchacse the bestteatnode for inserting line segments
InsertLSto3DRtree(PageNum, id, LS);
/linsert the closed line into the 3DR-tree
ChangeUCPoint(id, LS.endpoint, PageNum , TRUE);
/I setthe tag now of the new UC point
IfF FindPrevUCinLeaf(id, PrevPos, PageNum);
/1 find the previous UC pointin the leafnode.
ChangeUCPoint(id, PrePos, PageNum, FALSE)
// reset the tag now ofthe previous UC point
ELSE {
PageNum « FindPrevUCinTree(ROOT, PrePos);
/! find the previous UC pointin the tree.
iF PageNum > 0
i/ success to find the previous UC point
ChangeUCPoint(id, PrePos, PageNum,6 FALSE)
/lresetthe tag now ofthe previous UC point
}
IF PageNum does not have UC tines
AdjustTreeUC(PageNum, Faise);
!l propagate to the parents of this leafnode.

Fig. 3 Insertion algorithm.

3.5 The splitting policy along time axis

I propose a new splitting policy to improve
space utilization of split nodes. The continuous
growth of the movement requires enlargement of
MBB along time axis. This results in splitting of
overfull nodes along time axis. The old node of
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two balanced split nodes shows
utilization because of no insertion
node.

Figure 4 shows an example of unbalanced
splitting along time axis. The results of
unbalanced splitting are two split nodes, a UC
MBB and a fixed MBB, where a UC MBB
contains closed lines with UC points, but a fixed
MBB does not include any UC point. In order to
increase space utilization, I assign the maximum
number of lines to the fixed MBB, if possible.
The fixed MBB is allowed to contain more than
a half capacity of a leaf node within the upper
bound of Cnode.

low space
of the old

new line ue
now now U C U C UC
uc f R MBB
uc f
Fixed
MBB
X xy
@ Y (b

Fig. 4 The unbalanced splitting along time axis. (a)
the insertion of a new line segment. (b) the
unbalanced split along time axis.

Iv. EXPERIMENT

In this section, in order to evaluate the
performance of the tagged dynamic 3DR-tree
proposed in this paper, I compared it with the
original 3DR-tree and TB-tree.

Since there is no the real dataset related with
moving objects, I utilize the GSTD[9] generator
to generate a dataset being used for this
experiment. I used two groups of datasets with
varying number of objects and varying frequency
of sampling position. VNO(Varying Number
Objects) consists of four different datasets with
objects per snapshot ranging from 500 to 2500,
and report frequency per objects is 2000.
VRF(Varying Report Frequency) consists of four
different datasets with report frequency per
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objects ranging from 500 to 5000, and the
number of moving objects is 1000. The
performance evaluation vectors are summarized
in Table 1.

Table. 1 Performance Evaluation Vectors

L Evaluation
Symbols Definitions
Example
The number of moving { 500, 1000,
Nuo .
objects 1500,2500
The frequency of
. .. 500, 1000,
Ts sampling positions for
. 2000, 5000
each object
The Size of Range 5%, 10%,
RQS
Query 20%

4.1 Comparison of space utilization

The high space utilization can reduce the cost
of query processing because the height of the
tree decreases. The space utilization of the R-tree
is usually about 57%. The R*-tree[8] increases the
space utilization up to 63% with the reinsert
algorithm. The average space utilization of the
R*-tree is higher than the R-tree, but the
performance of range query processing is similar
to each other.
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Fig. 6 Comparison for current position queries with
VNO datasets : various range, (a) 5%, (b) 10% and
(c) 20% in each dimension.
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The TB-tree does not allow different segments
from different trajectories to be stored in the
same leaf node. A new line segment is inserted
to the leaf node that contains its predecessor in
the trajectory. The space utilization of the TB-tree
is over than 90%. The disadvantage of the
TB-tree is that leaf nodes of TB-tree are deeply
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overlapped. My tagged dynamic 3DR-tree using
the unbalanced splitting policy for the time
domain shows that the space utilization is
between 68% and 77%.
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Fig. 5 Comparison of space utilization. (a)
versus the number of moving objects. (b) versus
the frequency of sampling positions.

Figure 5 shows space utilization for varying
the number of moving objects and the frequency
of sampling of an object's positions. As the
experiments show, if the number of moving
objects increases, the space utilization of the
tagged dynamic 3DR-tree is worse. If the report
frequency increases, the space utilization of the
tagged dynamic 3DR-tree is better.

4.3 Performance  evaluation of
position queries

The original R-tree and TB-tree does not
support for querying the lastly reported positions
of moving objects. Current position queries for
the original R-tree and TB-tree are used range
queries with one sampling interval of moving
objects. I ignored the accuracy of query results
for the original R-tree and TB-tree, but Figure 6
shows that the tagged dynamic 3DR-tree
performs better than the original R-tree and
TB-tree. Since time intervals of moving objects
differ from each other, the performance of the
original R-tree is worse than the tagged
3DR-tree. The performance of the TB-tree is not

current

good than others, because the TB-tree is highly
overlapped between nodes.

4.4 Performance evaluation for varying the
number of moving objects
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Fig. 7 The number of node accesses for processing

range queries versus the number of moving objects :

various range, (a) 5%, (b) 10% and (c) 20% in each
dimension

The number of disk accesses for processing
range queries depends on the number of moving
objects. As Figure 7 shows, the tagged dynamic
3DR-tree performs better than the original R-tree
and TB-tree for all range queries. The
experiments show that the tagged dynamic
3DR-tree considerably can reduce the overlap
between nodes by using the forced merging
policy and the clipping big line segment policy.
For a large range query, the performance of the
original R-tree is similar to the TB-tree. Since the
space utilization of the TB-tree is better than the
others, the TB-tree is the best method for
lowering the height of the tree.

V. Conclusion

I propose the modified R-tree based index
structure, called the tagged dynamic 3DR-tree, to
handle the problems of range queries on current
and past positions, To improve the space
utilization of index nodes, I proposed the
unbalanced splitting policy for dividing an
overfull node along time axis. By virtue of the
unbalanced splitting along time axis, the tagged
dynamic 3DR-tree has better space utilization
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than the original R-tree.

The TB-tree is more efficient than the tagged
dynamic 3DR-tree in the space utilization, but
the performance of range queries is not good
compared with the original R-tree and the
tagged dynamic 3DR-tree because of high
overlap of index nodes. In all experiments, the
tagged dynamic 3DR-tree’s space utilization is
better than the original R-tree, and the
performance of current position queries and
range queries are also better. Because the
choosing split axis algorithm is simple, the
average insertion cost of the tagged dynamic
3DR-tree is lower than for the original R-tree
and TB-tree.
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