Real-Time Automatic Tracking of Facial Feature

얼굴 특징 실시간 자동 추적

  • Published : 2004.10.01

Abstract

Robust, real-time, fully automatic tracking of facial features is required for many computer vision and graphics applications. In this paper, we describe a fully automatic system that tracks eyes and eyebrows in real time. The pupils are tracked using the red eye effect by an infrared sensitive camera equipped with infrared LEDs. Templates are used to parameterize the facial features. For each new frame, the pupil coordinates are used to extract cropped images of eyes and eyebrows. The template parameters are recovered by PCA analysis on these extracted images using a PCA basis, which was constructed during the training phase with some example images. The system runs at 30 fps and requires no manual initialization or calibration. The system is shown to work well on sequences with considerable head motions and occlusions.

본 논문에서는 실시간으로 눈과 눈썹주위의 특징을 추적하는 새로운 알고리즘을 제안하고자 한다. 제안된 알고리즘은 적외선 LED와 적외선카메라로 밝은 동공 효과를 만들어 동공을 추적 한 후, 템플릿은 얼굴 특징을 매개변수화 하기 위해, 동공 좌표는 각각의 프레임에서 눈과 눈썹 영상을 추출하기 위하여 사용한다. 또한, 템플릿 변수는 표본 영상을 가지고 학습하는 과정에서 구성한 PCA기저를 이용하여 추출된 영상을 PCA 분석하여 구한다. 제안된 시스템은 초당 30 프레임의 영상에서 초기 설정 및 교정 작업 없이 머리 움직임이 많거나 폐색이 있는 경우에도 견실하게 동작하였다.

Keywords

References

  1. Y. Tian, T. Kanade, and J. F. Cohn. Dual-state parametric eye tracking. In Proceedings of Conference on Automatic Face and Gesture Recognition, 2000
  2. Y. Tian, T. Kanade, and J. F. Cohn. Recognizing upper face action units for facial expression analysis. In Proceedings of Conference on Computer Vision and Pattern Recognition, June 2000
  3. I. Essa, S. Basu, T. Darrell, and A. Pentland. Modeling, tracking and interactive animation of faces and heads using input from video. In Proceedings of Computer Animation Conference, 1996
  4. M. J. Jones and T. Poggio. Multidimensional morphable models. In Proceedings of International Conference on Computer Vision, 1998
  5. T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. Pattern Analysis and Machine Intelligence, 23(6), June 2001
  6. M. Covell.' Eigen-points. In Proceedings of International Conference Image Processing, September 1996
  7. M. Covell. Eigen-points: control-point location using principal component analyses. In Proceedings of Conference on Automatic Face and Gesture Recognition, October 1996
  8. C.Morimoto, D. Koons, A. Amir, and M. Flickner. Pupil detection and tracking using multiple light sources. Technical report, IBM Almaden Research Center, 1998
  9. A. Haro, I. Essa, and M. Flickner. Detecting and tracking eyes by using their physiological properties. In Proceedings of Conference on Computer Vision and Pattern Recognition, June 2000