Abstract
It is a major concern of e-shopping mall managers to satisfy a variety of customer's desire by recommending a proper product to the perspective purchaser. Customer information like customer's fondness, age, gender, etc. in shopping has not been used effectively for the customers or the suppliers. Conventionally, e-shopping mall managers have recommended specific items of products to their customers without considering thoroughly in a customer point of view. This study introduces the ways of a choosing and recommending of products using case-based reasoning and rule-based reasoning for customer themselves or others. A similarity measure between one member's idiosyncrasy and the other members' is developed based on the rule base and the case base. The case base is improved for the system intelligence by recognizing and learning the changes of customer's desire and shopping trend.
e쇼핑몰 경영자들은 고객들의 다양한 제품 구매 욕구를 충족시키기 위한 효율적 시스템에 많은 관심을 가지고 있다. 인터넷 쇼핑몰 운영에 있어 고객들의 개인적 구매 특성 및 취향을 파악하여 고객들을 효과적으로 관리하는데 많은 어려움이 있다. 상품 추천의 과정이 기획된 소수의 특정 상품을 고객의 유형 및 특성들의 고려 없이 공급자 중심으로 이루어져 고객관리의 문제점으로 지적되고 있다. 본 연구에서는 고객위주의 추천을 위해 규칙기반추론(Rule-Based Reasoning, RBR)과 사례기반추론(Case-Based Reasoning, CBR)을 하여 고객의 취향 및 구매 특성에 따른 추천방법을 제시한다. 기존의 제품 판매정보와 고객정보를 이용해 생성한 규칙베이스와 사례베이스의 고객특성과 입력된 고객특성의 유사도를 평가해서 고객의 취향에 따라 추천하도록 한다. 생성된 규칙과 사례기반의 추론으로 기존의 정보를 효과적으로 사용하고 또한 고객 및 시장 상황의 변화를 인식하고 지속적인 학습을 수행하여 지능적 추천이 이루어진다.