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A k-Span Secret Sharing Scheme
with Exposing Forged Shadows

Taek-jin Park’ - Dong-ho Won'"

ABSTRACT

In the secret sharing scheme, the reconstruction secret must to exposed to participants. In order to enforce the same secret sharing schemes,
a new secret have to regenerate and redistribute for participants. Such a regeneration process is inefficient because of the overhead in the
regeneration. In this paper, we proposed efficient secret regeneration scheme by eigenvalue. it can be also redistribution without revealing with
other participants.

SIS . £-4Y HIZEL WA( £-Span Secret Sharing Scheme), 2IZE H|ZU(Forged Shadow), W44 (Regeneration), OIAE 7|

(Master Key), I5xi(Eigenvalue)

1. Introduction

The concept of secret sharing scheme was introduced in—
dependently, in 1979, Blackly [1] and Shamir [2]. A secret
sharing scheme have a secret to be shared among par-
ticipants. A (¢, ) secret sharing scheme is a method that
divides secret into # shares for » participants, such that
the secret can be obtain by at least ¢ qualified participants,
while less than ¢ participants cannot take any information
about the secret. In this paper, we present a £-span secret
sharing scheme with exposing forged shadows. Our work
tries to solve the secret regeneration problem. One previous
work can be found in Dynamic Threshold Scheme [4], but
the threshold value is decreased in proportion the number of
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different secrets which have been revealed. Another previous
work is an /-span generalized secret sharing scheme which
is proposed by Lein and Hung-Yu Lin [5]. It is impossible
to detect unhonest shadowholders. The main idea in our
scheme is that master key vector is available for eigenvalue
parameter A* and it is the # shadows forms an orthogonal
subset in the #+1 dimensional space and then master key
is hidden in the master key vector which is orthogonal with
the # shadows subspace [3]. With public #+1— » compo-
nent of the master key vector space, any m shadows can
recover the master key vector and the master key. However,
if less than ¢ (< m )shadows are forged, it can be used to de-
tect the forged shadows with a very high probability. A %
—span secret sharing scheme is proposed to solve the secret
regeneration problem by eigenvalue from 1 to .. The shad-

ows can be repeatedly used for £ times to generate £ differ—
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ent secrets.

2. Eigenvector and its properties

In order to describe how the proposed scheme works, we
give some definitions and theorems in this section [6]. we

use these theorem without proof.

[Definition 1] Given a set S of possible secret, a (¢, % )-

threshold scheme on S is a method of diving each s;€ S
into vector of shares [s;,s,,*,s,] with each such that
s;€S

@D Given any set of ¢ or more of the s;, the secret value

s is easily reconstructible.

@ Given any set of fewer than ¢ of the s;, the secret value

s is completely undetermined in an information theoretic

sense.

[Definition 2] For given threshold scheme, we use ei-
genvalue A% 2<j<n+1, £=1,2,-- and corresponding
eigenvectors {U,'}, 1<i<n+1, to denote the random
function which assigns shares [s;, s;,**,s,] of secret val-

ue s to participants py, ps, """, Do

[Definition 3]

Let A be an (#nxx) matrix, A non-zero vector like as

(A —-AD" u=0
(A—=AD"""u+0

where 7 : unit matrix.
is called generalized eigenvector of order j corresponding

to A.

[Theorem 1]
Let A be an ( #xn) matrix, and A be an eigenvalue of A.
Then.

A* is an eigenvalue of A* £=2,3,-

[Theorem 2]
an (#xn) matrix A is diagonalizable if and only if A pos-

sesses a set of » linearly independent eigenvectors.

[Corollary 1]
Let A be an (nx%) matrix. f A has » distinct eigenvalues,

then A has a set of » linearly independent eigenvectors.

[Theorem 3] Let U be an n-dimensional vector space.
A linear transformation L : U — U is diagonalizable if
only if there exists a basis for U consisting of eigenvectors
for L

Consider the sequence { U,} define by

U1= LUO
U,=LU,
U3= LUZ

In general, this sequence is given by
U=LU,_, k=1,2,-

[Theorem 4] Gram-Schmit Process Let W be a p-di-
mensional subspace of R” and let {w,, w,, ", w,} be any
basis for W. Then the set of vectors {u,, uy, -, u,} is

an orthogonal basis for W, where

uy=u
u1Tw2
Uy = wy— ¢ u,
Uy Uy
T T
Uy Wy Uy W3
Uy = wW3— (L Uy,

1
ulTul uzTuz
and where, in general

izl ufw; .
Up 2=1=p 1

U, = w;
=1 ufu;

3. Our proposed An k-span secret sharing scheme
with exposing forged shadows.

The main idea of our proposed a % -span secret sharing
scheme with exposing forged shadows used eigenvector
from theorem 3 in secret regeneration procedure. The se-
quence { U,} can be calculated by multiplying power of L.
That is



U= LU,

U,= LU,=L(LU,) = L*U,

U,=L*U, k=1,2,

Next, let L have eigenvalues A4,,4,,,4,., and corre-
sponding eigenvectors{ U, UZ, -+, U1}, Namely, the
set of eigenvectors { U, UE, -+, U™} in U, is linearly

independent.

Thus, (U =AU for 1<j<n+l
LA U =A}U{

Ul=LYUH=2}U{ (2

3.1 Secret regeneration procedure

Assume that # is total number of shadows to be con-
structed and m ( < #) is threshold value required to recov-
er the single master key. The secret regeneration and mas-

ter key reconstruction procedures are described as follows.

Step 1: The Key Distribution Center(KDC) selects a

prime p(>K) first and a master key vector
Vo= (og, 05+, 0y 1)) With 04! =K and
vojlgp, 1<ji<n.

Step 2 : The KDC randomly selects # vectors V' (2 <
<n+1in Z,”*" such that V" and V{ are mu-
tually linear independent where i+ j and 1<
i<n+1l.

Step 3 : Apply the “Gram-Schmit Process” [Theorem 4].
KDC can obtain an orthogonal set U,={U,},
Ud, =, Uy '} in Z,”"! where V= U,

Step 4: L : Uy = U, be a linear transformation. Set of
eigenvectors is used as a basis for Z,”*! The
vector Uyt will also be written component like

1 [ 1
(o', ug', -, Ug(n+1) )

And now, we apply the sequence { U,} using Eq.(2), U/

can be expressed as a regeneration secret.
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U/=2Uf, 1<i<n+1 3
where /1,-" is used as k-span parameter £=1,2, -

Step 5: The KDC checks whether the (zxm) matrix
[a/]1=A is rank m.If A doesnt have rank m,
go to step 2 where [a;'1 = i) _.i1)

Step 6 : The KDC securely sends initial value A,5U{, as
the shadow to the shadowholder j, 2<;7<n+1.
k=1

Step 7 : The KDC publishes p and first »+1— m compo-
nents of the master key U, for the master key

recovery.

3.2 Master key reconstruction
The combination of any m shadows W’ 1< i< m, form
orthogonal set Uy={U{, UZ, -, U*'}, except U}, uni-
quely determines the master key as follows.
Wl
" tuiT=0. @
wm
where 7T denotes the transpose of matrix.
For more clearly, Eq.(4) can be rewritten as follows.
In Eq.(4), since the (mxm) matrix [w;/] (1< i< m and
1 <7 < =+1) is non singular and the vector Z is known,

component of master vector U,' is unknown.

1 1 1 1 1
Wy oo Wyty—m Wy oo Wiyt
2

w
wi Wy ... e cee e W4

et O
[

1
U o)
1
Uo

1 * =0 (5)
Uont1-m)

1
U(n+2—m)
1
U §(n+1)

Since the first z+1—m component of the master vector

U,' are public . Eq.(5) can be reformulated by
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1
UY(n+1—m+1)

1
Waotl—mtl »oeee Wiat1 ul( ) z!
2 0(n+t—m+2 2
Watl-—mtl +ovee Wit . =|Z 6)
..... . ) =
Watl-mtl soees Wyt u})(nﬂ) A
where Z'=—Z 0" wixuy), (1€j<mand n+2—m
<i<n+l)

Note that all of Equation (4) ~Equation (6) are operated

in GF(P). Since the master key is hidden in the master

vector UylGi.e, K=uy,+1"), the combination of any m

shadows can be determined using Equation (6).

Compare U, with A;* Uy, if £+ k', then shadowholder

U,’ define as forged shadow. To regenerate secret, The

KDC change only the & of eigenvalue A ,—k. The KDC can

be directly redistributed by changing % of A;%

(Table1> Comparition of our scheme with the other well-known scheme

scheme time complexity space complexity detect ability expose ability secret span
Shamir O(m log m) 1 X x x
Blakley O(m®) m/(n+1) x X x
Tompa O(m log *m) 1/m m—1 X X
Asmuth O(m) /2 m—1 L m=1/2] x
C.S.Laih 0(m®) min+1 m—1 lm—1/21 x

Our scheme o(m*) min+1 m—1 l m=1/2] k

* 1L (m—1/2) !

3.3 security analysis
(D The prosed scheme satisfies the Definition 1, that is,

knowledge of any m—1 or fewer shadows provides
no more information about the master key then was
known before.

@ Suppose AeT. and let Aj be its reconstruction
matrix. Let A and Ay be similar, meaning that for

some nonsingular matrix P,
Ap= P AP

Being similar means that A and B represent the same
linear transformation of the vector space R, or C”.

Then

Fap(A)=det (Ag— A = det(P ' AP— D)
=[det P~'] def{ A— AI[ det P]
=det (P [A—AIIP) =det (A—AD) = f,(A)

since detP~'detP=det(P™'P)=1.

This says that the similar matrices have the same
eigenvalues.

We have that their coefficients are invariant.

From the theorem 1, We have

Au=Au;, j=1,,n

Thus the columns %, -, u, are orthogonal eigenvector

of A. There is an orthogonal basis for the associated vector
space V consisting of eigenvectors of A, for a Hermitian
matrix A, the eigenvalues are all real.

u? gives u"Awu=Au"u forming the Hermitian trans-
pose of this equation and making use of the property
A=A gives

wTAu=1"uly

where A* is the complex conjugate of A. However «u=0,
unless « is a null vector. Hence it follows that A*= A and
A must be real. It is also possible to show that the ei-
genvectors can be written in real form. A”A=1 takes the
place of the orthogonal transformation matrix. All the ei-
genvalues of a Hermitian matrix can be shown to be real.
Thus, all of the shares are from the same domain as the
secret. Our proposed scheme based on eigenvalue be equiv—

alent to ideal secret sharing scheme.

@ ideal scheme can provide perfect security at any time

regardless how many previous master key and public



shadows are known [4]. If the master keys, U,', are

kept secret, our scheme also provide Shannon perfect

security.

3.4 Access structure

Given a secret sharing scheme, the structure, I", define
as the set of subsets of participants that can determine the
secret. In this paper, we assume that every participant has
equal privilege and restrict our attention to secret sharing
schemes in which I' is monotone, that is, if BT, and if
B is contained in C, then C eI Our scheme satisfies the
Definition 2. A perfect secret sharing scheme is idea! if all
of the shares are from the same domain as the secret. The

monotone set of subsets, I', called an ideal access struc-

ture if there is some édeal secret sharing scheme for which

I' is the access structure.

3.5 Dynamic Threshold Scheme

Dynamic Threshold Scheme [4] or, more precisely, the
(d, m,n,t) threshold/ramp scheme, where d,m, and =
are the number of secrets, threshold value of shadows, and
number of all shadows, respectively, and ¢ indicates time.
To compared conventional threshold/ramp scheme, at least
one of the previous issued # shadows need to be changed
whenever the master key need to be update for security
reasons. But this scheme have a drawback that the thresh-
old value is decreased in proportion the number of different
secrets which have been revealed. Another previous work
is an /-span generalized secret sharing scheme which is
proposed by Lein and Hung-Yu Lin [5]. Each participant
may be designated with a different privilege. It is impos-

sible to detect unhonest shadowholders.

4, Gonclusion

In this paper, we proposed k-span secret sharing scheme
with exposing forged shadows. The major advantage of
proposed scheme change only the 2 of eigenvalue parame-
ter A /k for secret regeneration . Also the reconstruction se-
cret must be revealed but our scheme make redistribution

without revealing with other participants. Our work have

EZIOIA mEDIX B -y HIFZAYA 567

shorter tags and more span secret. It can be reduce the
overhead in the regeneration and redistribution for

shadows.
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